IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48183-7.html
   My bibliography  Save this article

Centimeter-scale nanomechanical resonators with low dissipation

Author

Listed:
  • Andrea Cupertino

    (Delft University of Technology)

  • Dongil Shin

    (Delft University of Technology
    Delft University of Technology)

  • Leo Guo

    (Delft University of Technology)

  • Peter G. Steeneken

    (Delft University of Technology
    Delft University of Technology)

  • Miguel A. Bessa

    (Brown University)

  • Richard A. Norte

    (Delft University of Technology
    Delft University of Technology)

Abstract

High-aspect-ratio mechanical resonators are pivotal in precision sensing, from macroscopic gravitational wave detectors to nanoscale acoustics. However, fabrication challenges and high computational costs have limited the length-to-thickness ratio of these devices, leaving a largely unexplored regime in nano-engineering. We present nanomechanical resonators that extend centimeters in length yet retain nanometer thickness. We explore this expanded design space using an optimization approach which judiciously employs fast millimeter-scale simulations to steer the more computationally intensive centimeter-scale design optimization. By employing delicate nanofabrication techniques, our approach ensures high-yield realization, experimentally confirming room-temperature quality factors close to theoretical predictions. The synergy between nanofabrication, design optimization guided by machine learning, and precision engineering opens a solid-state path to room-temperature quality factors approaching 10 billion at kilohertz mechanical frequencies – comparable to the performance of leading cryogenic resonators and levitated nanospheres, even under significantly less stringent temperature and vacuum conditions.

Suggested Citation

  • Andrea Cupertino & Dongil Shin & Leo Guo & Peter G. Steeneken & Miguel A. Bessa & Richard A. Norte, 2024. "Centimeter-scale nanomechanical resonators with low dissipation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48183-7
    DOI: 10.1038/s41467-024-48183-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48183-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48183-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. King Yan Fong & Hao-Kun Li & Rongkuo Zhao & Sui Yang & Yuan Wang & Xiang Zhang, 2019. "Phonon heat transfer across a vacuum through quantum fluctuations," Nature, Nature, vol. 576(7786), pages 243-247, December.
    2. Massimiliano Rossi & David Mason & Junxin Chen & Yeghishe Tsaturyan & Albert Schliesser, 2018. "Measurement-based quantum control of mechanical motion," Nature, Nature, vol. 563(7729), pages 53-58, November.
    3. M. J. Bereyhi & A. Beccari & R. Groth & S. A. Fedorov & A. Arabmoheghi & T. J. Kippenberg & N. J. Engelsen, 2022. "Hierarchical tensile structures with ultralow mechanical dissipation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Yannick Seis & Thibault Capelle & Eric Langman & Sampo Saarinen & Eric Planz & Albert Schliesser, 2022. "Ground state cooling of an ultracoherent electromechanical system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Guanhao Huang & Alberto Beccari & Nils J. Engelsen & Tobias J. Kippenberg, 2024. "Room-temperature quantum optomechanics using an ultralow noise cavity," Nature, Nature, vol. 626(7999), pages 512-516, February.
    6. Lorenzo Magrini & Philipp Rosenzweig & Constanze Bach & Andreas Deutschmann-Olek & Sebastian G. Hofer & Sungkun Hong & Nikolai Kiesel & Andreas Kugi & Markus Aspelmeyer, 2021. "Real-time optimal quantum control of mechanical motion at room temperature," Nature, Nature, vol. 595(7867), pages 373-377, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingkun Guo & Jin Chang & Xiong Yao & Simon Gröblacher, 2023. "Active-feedback quantum control of an integrated low-frequency mechanical resonator," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Christian Bærentsen & Sergey A. Fedorov & Christoffer Østfeldt & Mikhail V. Balabas & Emil Zeuthen & Eugene S. Polzik, 2024. "Squeezed light from an oscillator measured at the rate of oscillation," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Fabrizio Berritta & Torbjørn Rasmussen & Jan A. Krzywda & Joost Heijden & Federico Fedele & Saeed Fallahi & Geoffrey C. Gardner & Michael J. Manfra & Evert Nieuwenburg & Jeroen Danon & Anasua Chatterj, 2024. "Real-time two-axis control of a spin qubit," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Cheng Wang & Louise Banniard & Kjetil Børkje & Francesco Massel & Laure Mercier de Lépinay & Mika A. Sillanpää, 2024. "Ground-state cooling of a mechanical oscillator by a noisy environment," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Yannick Seis & Thibault Capelle & Eric Langman & Sampo Saarinen & Eric Planz & Albert Schliesser, 2022. "Ground state cooling of an ultracoherent electromechanical system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. M. J. Bereyhi & A. Beccari & R. Groth & S. A. Fedorov & A. Arabmoheghi & T. J. Kippenberg & N. J. Engelsen, 2022. "Hierarchical tensile structures with ultralow mechanical dissipation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Peipei Pan & Aixi Chen & Li Deng, 2023. "Improving Mechanical Oscillator Cooling in a Double-Coupled Cavity Optomechanical System with an Optical Parametric Amplifier," Mathematics, MDPI, vol. 11(9), pages 1-12, May.
    8. Roel Burgwal & Ewold Verhagen, 2023. "Enhanced nonlinear optomechanics in a coupled-mode photonic crystal device," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Zhujing Xu & Peng Ju & Xingyu Gao & Kunhong Shen & Zubin Jacob & Tongcang Li, 2022. "Observation and control of Casimir effects in a sphere-plate-sphere system," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Yuanbin Jin & Kunhong Shen & Peng Ju & Xingyu Gao & Chong Zu & Alejandro J. Grine & Tongcang Li, 2024. "Quantum control and Berry phase of electron spins in rotating levitated diamonds in high vacuum," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Stefano Stassi & Ido Cooperstein & Mauro Tortello & Candido Fabrizio Pirri & Shlomo Magdassi & Carlo Ricciardi, 2021. "Reaching silicon-based NEMS performances with 3D printed nanomechanical resonators," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    12. Mitsuyoshi Kamba & Ryoga Shimizu & Kiyotaka Aikawa, 2023. "Nanoscale feedback control of six degrees of freedom of a near-sphere," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48183-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.