IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49467-8.html
   My bibliography  Save this article

Bidirectional microwave-optical transduction based on integration of high-overtone bulk acoustic resonators and photonic circuits

Author

Listed:
  • Terence Blésin

    (Swiss Federal Institute of Technology Lausanne (EPFL)
    Center of Quantum Science and Engineering (EPFL))

  • Wil Kao

    (Swiss Federal Institute of Technology Lausanne (EPFL)
    Center of Quantum Science and Engineering (EPFL))

  • Anat Siddharth

    (Swiss Federal Institute of Technology Lausanne (EPFL)
    Center of Quantum Science and Engineering (EPFL))

  • Rui N. Wang

    (Swiss Federal Institute of Technology Lausanne (EPFL)
    Center of Quantum Science and Engineering (EPFL))

  • Alaina Attanasio

    (Purdue University)

  • Hao Tian

    (Purdue University)

  • Sunil A. Bhave

    (Purdue University)

  • Tobias J. Kippenberg

    (Swiss Federal Institute of Technology Lausanne (EPFL)
    Center of Quantum Science and Engineering (EPFL))

Abstract

Coherent interconversion between microwave and optical frequencies can serve as both classical and quantum interfaces for computing, communication, and sensing. Here, we present a compact microwave-optical transducer based on monolithic integration of piezoelectric actuators on silicon nitride photonic circuits. Such an actuator couples microwave signals to a high-overtone bulk acoustic resonator defined by the silica cladding of the optical waveguide core, suspended to enhance electromechanical and optomechanical couplings. At room temperature, this triply resonant piezo-optomechanical transducer achieves an off-chip photon number conversion efficiency of 1.6 × 10−5 over a bandwidth of 25 MHz at an input pump power of 21 dBm. The approach is scalable in manufacturing and does not rely on superconducting resonators. As the transduction process is bidirectional, we further demonstrate the synthesis of microwave pulses from a purely optical input. Capable of leveraging multiple acoustic modes for transduction, this platform offers prospects for frequency-multiplexed qubit interconnects and microwave photonics at large.

Suggested Citation

  • Terence Blésin & Wil Kao & Anat Siddharth & Rui N. Wang & Alaina Attanasio & Hao Tian & Sunil A. Bhave & Tobias J. Kippenberg, 2024. "Bidirectional microwave-optical transduction based on integration of high-overtone bulk acoustic resonators and photonic circuits," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49467-8
    DOI: 10.1038/s41467-024-49467-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49467-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49467-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Itay Shomroni & Liu Qiu & Daniel Malz & Andreas Nunnenkamp & Tobias J. Kippenberg, 2019. "Optical backaction-evading measurement of a mechanical oscillator," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    2. Xu Han & Wei Fu & Changchun Zhong & Chang-Ling Zou & Yuntao Xu & Ayed Al Sayem & Mingrui Xu & Sihao Wang & Risheng Cheng & Liang Jiang & Hong X. Tang, 2020. "Cavity piezo-mechanics for superconducting-nanophotonic quantum interface," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    3. R. D. Delaney & M. D. Urmey & S. Mittal & B. M. Brubaker & J. M. Kindem & P. S. Burns & C. A. Regal & K. W. Lehnert, 2022. "Superconducting-qubit readout via low-backaction electro-optic transduction," Nature, Nature, vol. 606(7914), pages 489-493, June.
    4. Wentao Jiang & Christopher J. Sarabalis & Yanni D. Dahmani & Rishi N. Patel & Felix M. Mayor & Timothy P. McKenna & Raphaël Van Laer & Amir H. Safavi-Naeini, 2020. "Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    5. L.-M. Duan & M. D. Lukin & J. I. Cirac & P. Zoller, 2001. "Long-distance quantum communication with atomic ensembles and linear optics," Nature, Nature, vol. 414(6862), pages 413-418, November.
    6. Junqiu Liu & Guanhao Huang & Rui Ning Wang & Jijun He & Arslan S. Raja & Tianyi Liu & Nils J. Engelsen & Tobias J. Kippenberg, 2021. "High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. F. Lecocq & F. Quinlan & K. Cicak & J. Aumentado & S. A. Diddams & J. D. Teufel, 2021. "Control and readout of a superconducting qubit using a photonic link," Nature, Nature, vol. 591(7851), pages 575-579, March.
    8. Sangsik Kim & Kyunghun Han & Cong Wang & Jose A. Jaramillo-Villegas & Xiaoxiao Xue & Chengying Bao & Yi Xuan & Daniel E. Leaird & Andrew M. Weiner & Minghao Qi, 2017. "Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    9. Rishabh Sahu & William Hease & Alfredo Rueda & Georg Arnold & Liu Qiu & Johannes M. Fink, 2022. "Quantum-enabled operation of a microwave-optical interface," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    10. Hao Tian & Junqiu Liu & Bin Dong & J. Connor Skehan & Michael Zervas & Tobias J. Kippenberg & Sunil A. Bhave, 2020. "Hybrid integrated photonics using bulk acoustic resonators," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    11. Liu Qiu & Rishabh Sahu & William Hease & Georg Arnold & Johannes M. Fink, 2023. "Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Mohammad Mirhosseini & Alp Sipahigil & Mahmoud Kalaee & Oskar Painter, 2020. "Superconducting qubit to optical photon transduction," Nature, Nature, vol. 588(7839), pages 599-603, December.
    13. Yuntao Xu & Ayed Al Sayem & Linran Fan & Chang-Ling Zou & Sihao Wang & Risheng Cheng & Wei Fu & Likai Yang & Mingrui Xu & Hong X. Tang, 2021. "Bidirectional interconversion of microwave and light with thin-film lithium niobate," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    14. Junqiu Liu & Hao Tian & Erwan Lucas & Arslan S. Raja & Grigory Lihachev & Rui Ning Wang & Jijun He & Tianyi Liu & Miles H. Anderson & Wenle Weng & Sunil A. Bhave & Tobias J. Kippenberg, 2020. "Monolithic piezoelectric control of soliton microcombs," Nature, Nature, vol. 583(7816), pages 385-390, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu Qiu & Rishabh Sahu & William Hease & Georg Arnold & Johannes M. Fink, 2023. "Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Simon Hönl & Youri Popoff & Daniele Caimi & Alberto Beccari & Tobias J. Kippenberg & Paul Seidler, 2022. "Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Rishabh Sahu & William Hease & Alfredo Rueda & Georg Arnold & Liu Qiu & Johannes M. Fink, 2022. "Quantum-enabled operation of a microwave-optical interface," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Grigory Lihachev & Johann Riemensberger & Wenle Weng & Junqiu Liu & Hao Tian & Anat Siddharth & Viacheslav Snigirev & Vladimir Shadymov & Andrey Voloshin & Rui Ning Wang & Jijun He & Sunil A. Bhave & , 2022. "Low-noise frequency-agile photonic integrated lasers for coherent ranging," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Chiao-Hsuan Wang & Fangxin Li & Liang Jiang, 2022. "Quantum capacities of transducers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. I-Tung Chen & Bingzhao Li & Seokhyeong Lee & Srivatsa Chakravarthi & Kai-Mei Fu & Mo Li, 2023. "Optomechanical ring resonator for efficient microwave-optical frequency conversion," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Jake Rochman & Tian Xie & John G. Bartholomew & K. C. Schwab & Andrei Faraon, 2023. "Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Hugo Molinares & Bing He & Vitalie Eremeev, 2023. "Transfer of Quantum States and Stationary Quantum Correlations in a Hybrid Optomechanical Network," Mathematics, MDPI, vol. 11(13), pages 1-18, June.
    9. Han Zhao & Bingzhao Li & Huan Li & Mo Li, 2022. "Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    10. Roel Burgwal & Ewold Verhagen, 2023. "Enhanced nonlinear optomechanics in a coupled-mode photonic crystal device," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Maodong Gao & Qi-Fan Yang & Qing-Xin Ji & Heming Wang & Lue Wu & Boqiang Shen & Junqiu Liu & Guanhao Huang & Lin Chang & Weiqiang Xie & Su-Peng Yu & Scott B. Papp & John E. Bowers & Tobias J. Kippenbe, 2022. "Probing material absorption and optical nonlinearity of integrated photonic materials," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Hsuan-Hao Lu & Karthik V. Myilswamy & Ryan S. Bennink & Suparna Seshadri & Mohammed S. Alshaykh & Junqiu Liu & Tobias J. Kippenberg & Daniel E. Leaird & Andrew M. Weiner & Joseph M. Lukens, 2022. "Bayesian tomography of high-dimensional on-chip biphoton frequency combs with randomized measurements," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Yannick Seis & Thibault Capelle & Eric Langman & Sampo Saarinen & Eric Planz & Albert Schliesser, 2022. "Ground state cooling of an ultracoherent electromechanical system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    14. Yaojing Zhang & Keyi Zhong & Xuetong Zhou & Hon Ki Tsang, 2022. "Broadband high-Q multimode silicon concentric racetrack resonators for widely tunable Raman lasers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. André G. Primo & Pedro V. Pinho & Rodrigo Benevides & Simon Gröblacher & Gustavo S. Wiederhecker & Thiago P. Mayer Alegre, 2023. "Dissipative optomechanics in high-frequency nanomechanical resonators," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    16. M. Businger & L. Nicolas & T. Sanchez Mejia & A. Ferrier & P. Goldner & Mikael Afzelius, 2022. "Non-classical correlations over 1250 modes between telecom photons and 979-nm photons stored in 171Yb3+:Y2SiO5," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Valeria Vento & Santiago Tarrago Velez & Anna Pogrebna & Christophe Galland, 2023. "Measurement-induced collective vibrational quantum coherence under spontaneous Raman scattering in a liquid," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    18. Zenghui Bao & Yan Li & Zhiling Wang & Jiahui Wang & Jize Yang & Haonan Xiong & Yipu Song & Yukai Wu & Hongyi Zhang & Luming Duan, 2024. "A cryogenic on-chip microwave pulse generator for large-scale superconducting quantum computing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. J. M. Chavez Boggio & D. Bodenmüller & S. Ahmed & S. Wabnitz & D. Modotto & T. Hansson, 2022. "Efficient Kerr soliton comb generation in micro-resonator with interferometric back-coupling," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Ya. S. Greenberg & A. A. Shtygashev & A. G. Moiseev, 2023. "Time-dependent theory of single-photon scattering from a two-qubit system," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(12), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49467-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.