IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52064-4.html
   My bibliography  Save this article

Storing light near an exceptional point

Author

Listed:
  • Yicheng Zhu

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

  • Jiankun Hou

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

  • Qi Geng

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

  • Boyi Xue

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

  • Yuping Chen

    (Shanghai Jiao Tong University)

  • Xianfeng Chen

    (Shanghai Jiao Tong University)

  • Li Ge

    (The City University of New York)

  • Wenjie Wan

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University
    Shanghai Jiao Tong University
    East China Normal University)

Abstract

Photons with zero rest mass are impossible to be stopped. However, a pulse of light can be slowed down and even halted through strong light-matter interaction in a dispersive medium in atomic systems. Exceptional point (EP), a non-Hermitian singularity point, can introduce an abrupt transition in dispersion. Here we experimentally observe room-temperature storing light near an exceptional point induced by nonlinear Brillouin scattering in a chip-scale 90-μm-radius optical microcavity, the smallest platform up to date to store light. Through nonlinear coupling, a Parity-Time (PT) symmetry can be constructed in optical-acoustical hybrid modes, where Brillouin scattering-induced absorption (BSIA) can lead to both slow light and fast light of incoming pulses. A subtle transition of slow-to-fast light reveals a critical point for storing a light pulse up to half a millisecond. This compact and room-temperature scheme of storing light paves the way for practical applications in all-optical communications and quantum information processing.

Suggested Citation

  • Yicheng Zhu & Jiankun Hou & Qi Geng & Boyi Xue & Yuping Chen & Xianfeng Chen & Li Ge & Wenjie Wan, 2024. "Storing light near an exceptional point," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52064-4
    DOI: 10.1038/s41467-024-52064-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52064-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52064-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. D. Lukin & A. Imamoğlu, 2001. "Controlling photons using electromagnetically induced transparency," Nature, Nature, vol. 413(6853), pages 273-276, September.
    2. Chien Liu & Zachary Dutton & Cyrus H. Behroozi & Lene Vestergaard Hau, 2001. "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature, Nature, vol. 409(6819), pages 490-493, January.
    3. M. Bajcsy & A. S. Zibrov & M. D. Lukin, 2003. "Stationary pulses of light in an atomic medium," Nature, Nature, vol. 426(6967), pages 638-641, December.
    4. Hossein Hodaei & Absar U. Hassan & Steffen Wittek & Hipolito Garcia-Gracia & Ramy El-Ganainy & Demetrios N. Christodoulides & Mercedeh Khajavikhan, 2017. "Enhanced sensitivity at higher-order exceptional points," Nature, Nature, vol. 548(7666), pages 187-191, August.
    5. Chun-Hua Dong & Zhen Shen & Chang-Ling Zou & Yan-Lei Zhang & Wei Fu & Guang-Can Guo, 2015. "Brillouin-scattering-induced transparency and non-reciprocal light storage," Nature Communications, Nature, vol. 6(1), pages 1-6, May.
    6. A. H. Safavi-Naeini & T. P. Mayer Alegre & J. Chan & M. Eichenfield & M. Winger & Q. Lin & J. T. Hill & D. E. Chang & O. Painter, 2011. "Electromagnetically induced transparency and slow light with optomechanics," Nature, Nature, vol. 472(7341), pages 69-73, April.
    7. Sid Assawaworrarit & Xiaofang Yu & Shanhui Fan, 2017. "Robust wireless power transfer using a nonlinear parity–time-symmetric circuit," Nature, Nature, vol. 546(7658), pages 387-390, June.
    8. Weijian Chen & Şahin Kaya Özdemir & Guangming Zhao & Jan Wiersig & Lan Yang, 2017. "Exceptional points enhance sensing in an optical microcavity," Nature, Nature, vol. 548(7666), pages 192-196, August.
    9. Jörg Doppler & Alexei A. Mailybaev & Julian Böhm & Ulrich Kuhl & Adrian Girschik & Florian Libisch & Thomas J. Milburn & Peter Rabl & Nimrod Moiseyev & Stefan Rotter, 2016. "Dynamically encircling an exceptional point for asymmetric mode switching," Nature, Nature, vol. 537(7618), pages 76-79, September.
    10. Kerry J. Vahala, 2003. "Optical microcavities," Nature, Nature, vol. 424(6950), pages 839-846, August.
    11. Rodion Kononchuk & Jizhe Cai & Fred Ellis & Ramathasan Thevamaran & Tsampikos Kottos, 2022. "Exceptional-point-based accelerometers with enhanced signal-to-noise ratio," Nature, Nature, vol. 607(7920), pages 697-702, July.
    12. Lene Vestergaard Hau & S. E. Harris & Zachary Dutton & Cyrus H. Behroozi, 1999. "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature, Nature, vol. 397(6720), pages 594-598, February.
    13. Hossein Hodaei & Absar U. Hassan & Steffen Wittek & Hipolito Garcia-Gracia & Ramy El-Ganainy & Demetrios N. Christodoulides & Mercedeh Khajavikhan, 2017. "Erratum: Enhanced sensitivity at higher-order exceptional points," Nature, Nature, vol. 551(7682), pages 658-658, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Zhou & Xingjing Ren & Dingbang Xiao & Jianqi Zhang & Ran Huang & Zhipeng Li & Xiaopeng Sun & Xuezhong Wu & Cheng-Wei Qiu & Franco Nori & Hui Jing, 2023. "Higher-order singularities in phase-tracked electromechanical oscillators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Minye Yang & Liang Zhu & Qi Zhong & Ramy El-Ganainy & Pai-Yen Chen, 2023. "Spectral sensitivity near exceptional points as a resource for hardware encryption," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. M. Król & I. Septembre & P. Oliwa & M. Kędziora & K. Łempicka-Mirek & M. Muszyński & R. Mazur & P. Morawiak & W. Piecek & P. Kula & W. Bardyszewski & P. G. Lagoudakis & D. D. Solnyshkov & G. Malpuech , 2022. "Annihilation of exceptional points from different Dirac valleys in a 2D photonic system," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    4. Arunn Suntharalingam & Lucas Fernández-Alcázar & Rodion Kononchuk & Tsampikos Kottos, 2023. "Noise resilient exceptional-point voltmeters enabled by oscillation quenching phenomena," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Steffen Wittrock & Salvatore Perna & Romain Lebrun & Katia Ho & Roberta Dutra & Ricardo Ferreira & Paolo Bortolotti & Claudio Serpico & Vincent Cros, 2024. "Non-hermiticity in spintronics: oscillation death in coupled spintronic nano-oscillators through emerging exceptional points," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Xingwei Gao & Hao He & Scott Sobolewski & Alexander Cerjan & Chia Wei Hsu, 2024. "Dynamic gain and frequency comb formation in exceptional-point lasers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Liao, Qinghong & Song, Menglin & Bao, Weida, 2023. "Generation of second-order sideband and slow-fast light effects in a PT-symmetric optomechanical system," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    8. A. Hashemi & K. Busch & D. N. Christodoulides & S. K. Ozdemir & R. El-Ganainy, 2022. "Linear response theory of open systems with exceptional points," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Djorwé, P. & Alphonse, H. & Abbagari, S. & Doka, S.Y. & Engo, S.G. Nana, 2023. "Synthetic magnetism for solitons in optomechanical array," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    10. Baheej Bathish & Raanan Gad & Fan Cheng & Kristoffer Karlsson & Ramgopal Madugani & Mark Douvidzon & Síle Nic Chormaic & Tal Carmon, 2023. "Absorption-induced transmission in plasma microphotonics," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    11. Mandilara, Aikaterini & Ivić, Zoran & Čevizović, Dalibor & Pržulj, Željko, 2017. "Self-induced transparency of the optical phonons," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 14-20.
    12. Siyu Duan & Xin Su & Hongsong Qiu & Yushun Jiang & Jingbo Wu & Kebin Fan & Caihong Zhang & Xiaoqing Jia & Guanghao Zhu & Lin Kang & Xinglong Wu & Huabing Wang & Keyu Xia & Biaobing Jin & Jian Chen & P, 2024. "Linear and phase controllable terahertz frequency conversion via ultrafast breaking the bond of a meta-molecule," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Kai Zhang & Zhesen Yang & Chen Fang, 2022. "Universal non-Hermitian skin effect in two and higher dimensions," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    14. Teng Tan & Zhongye Yuan & Hao Zhang & Guofeng Yan & Siyu Zhou & Ning An & Bo Peng & Giancarlo Soavi & Yunjiang Rao & Baicheng Yao, 2021. "Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    15. Jie Qian & C. H. Meng & J. W. Rao & Z. J. Rao & Zhenghua An & Yongsheng Gui & C. -M. Hu, 2023. "Non-Hermitian control between absorption and transparency in perfect zero-reflection magnonics," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    16. Weijie Liu & Quancheng Liu & Xiang Ni & Yuechen Jia & Klaus Ziegler & Andrea Alù & Feng Chen, 2024. "Floquet parity-time symmetry in integrated photonics," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    17. Qiuyan Zhou & Jien Wu & Zhenhang Pu & Jiuyang Lu & Xueqin Huang & Weiyin Deng & Manzhu Ke & Zhengyou Liu, 2023. "Observation of geometry-dependent skin effect in non-Hermitian phononic crystals with exceptional points," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Xiao Li & Yineng Liu & Zhifang Lin & Jack Ng & C. T. Chan, 2021. "Non-Hermitian physics for optical manipulation uncovers inherent instability of large clusters," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    19. Chen, Lei & Huang, Feifan & Wang, Hongteng & Huang, Linwei & Huang, Junhua & Liu, Gui-Shi & Chen, Yaofei & Luo, Yunhan & Chen, Zhe, 2022. "Non-Hermitian-enhanced topological protection of chaotic dynamics in one-dimensional optomechanics lattice," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    20. Adrià Canós Valero & Hadi K. Shamkhi & Anton S. Kupriianov & Thomas Weiss & Alexander A. Pavlov & Dmitrii Redka & Vjaceslavs Bobrovs & Yuri Kivshar & Alexander S. Shalin, 2023. "Superscattering emerging from the physics of bound states in the continuum," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52064-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.