IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29115-9.html
   My bibliography  Save this article

Ground state cooling of an ultracoherent electromechanical system

Author

Listed:
  • Yannick Seis

    (University of Copenhagen
    University of Copenhagen)

  • Thibault Capelle

    (University of Copenhagen
    University of Copenhagen)

  • Eric Langman

    (University of Copenhagen
    University of Copenhagen)

  • Sampo Saarinen

    (University of Copenhagen
    University of Copenhagen)

  • Eric Planz

    (University of Copenhagen
    University of Copenhagen)

  • Albert Schliesser

    (University of Copenhagen
    University of Copenhagen)

Abstract

Cavity electromechanics relies on parametric coupling between microwave and mechanical modes to manipulate the mechanical quantum state, and provide a coherent interface between different parts of hybrid quantum systems. High coherence of the mechanical mode is of key importance in such applications, in order to protect the quantum states it hosts from thermal decoherence. Here, we introduce an electromechanical system based around a soft-clamped mechanical resonator with an extremely high Q-factor (>109) held at very low (30 mK) temperatures. This ultracoherent mechanical resonator is capacitively coupled to a microwave mode, strong enough to enable ground-state-cooling of the mechanics ( $${\bar{n}}_{\min }=0.76\pm 0.16$$ n ¯ min = 0.76 ± 0.16 ). This paves the way towards exploiting the extremely long coherence times (tcoh > 100 ms) offered by such systems for quantum information processing and state conversion.

Suggested Citation

  • Yannick Seis & Thibault Capelle & Eric Langman & Sampo Saarinen & Eric Planz & Albert Schliesser, 2022. "Ground state cooling of an ultracoherent electromechanical system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29115-9
    DOI: 10.1038/s41467-022-29115-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29115-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29115-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. D. Teufel & T. Donner & Dale Li & J. W. Harlow & M. S. Allman & K. Cicak & A. J. Sirois & J. D. Whittaker & K. W. Lehnert & R. W. Simmonds, 2011. "Sideband cooling of micromechanical motion to the quantum ground state," Nature, Nature, vol. 475(7356), pages 359-363, July.
    2. T. Bagci & A. Simonsen & S. Schmid & L. G. Villanueva & E. Zeuthen & J. Appel & J. M. Taylor & A. Sørensen & K. Usami & A. Schliesser & E. S. Polzik, 2014. "Optical detection of radio waves through a nanomechanical transducer," Nature, Nature, vol. 507(7490), pages 81-85, March.
    3. Patricio Arrangoiz-Arriola & E. Alex Wollack & Zhaoyou Wang & Marek Pechal & Wentao Jiang & Timothy P. McKenna & Jeremy D. Witmer & Raphaël Laer & Amir H. Safavi-Naeini, 2019. "Resolving the energy levels of a nanomechanical oscillator," Nature, Nature, vol. 571(7766), pages 537-540, July.
    4. Massimiliano Rossi & David Mason & Junxin Chen & Yeghishe Tsaturyan & Albert Schliesser, 2018. "Measurement-based quantum control of mechanical motion," Nature, Nature, vol. 563(7729), pages 53-58, November.
    5. C. F. Ockeloen-Korppi & E. Damskägg & J.-M. Pirkkalainen & M. Asjad & A. A. Clerk & F. Massel & M. J. Woolley & M. A. Sillanpää, 2018. "Stabilized entanglement of massive mechanical oscillators," Nature, Nature, vol. 556(7702), pages 478-482, April.
    6. Mohammad Mirhosseini & Alp Sipahigil & Mahmoud Kalaee & Oskar Painter, 2020. "Superconducting qubit to optical photon transduction," Nature, Nature, vol. 588(7839), pages 599-603, December.
    7. Mingyun Yuan & Vibhor Singh & Yaroslav M. Blanter & Gary A. Steele, 2015. "Large cooperativity and microkelvin cooling with a three-dimensional optomechanical cavity," Nature Communications, Nature, vol. 6(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Cupertino & Dongil Shin & Leo Guo & Peter G. Steeneken & Miguel A. Bessa & Richard A. Norte, 2024. "Centimeter-scale nanomechanical resonators with low dissipation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Cheng Wang & Louise Banniard & Kjetil Børkje & Francesco Massel & Laure Mercier de Lépinay & Mika A. Sillanpää, 2024. "Ground-state cooling of a mechanical oscillator by a noisy environment," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingkun Guo & Jin Chang & Xiong Yao & Simon Gröblacher, 2023. "Active-feedback quantum control of an integrated low-frequency mechanical resonator," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Simon Hönl & Youri Popoff & Daniele Caimi & Alberto Beccari & Tobias J. Kippenberg & Paul Seidler, 2022. "Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Cheng Wang & Louise Banniard & Kjetil Børkje & Francesco Massel & Laure Mercier de Lépinay & Mika A. Sillanpää, 2024. "Ground-state cooling of a mechanical oscillator by a noisy environment," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Rishabh Sahu & William Hease & Alfredo Rueda & Georg Arnold & Liu Qiu & Johannes M. Fink, 2022. "Quantum-enabled operation of a microwave-optical interface," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. D. Cattiaux & I. Golokolenov & S. Kumar & M. Sillanpää & L. Mercier de Lépinay & R. R. Gazizulin & X. Zhou & A. D. Armour & O. Bourgeois & A. Fefferman & E. Collin, 2021. "A macroscopic object passively cooled into its quantum ground state of motion beyond single-mode cooling," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    6. Agnetta Y. Cleland & E. Alex Wollack & Amir H. Safavi-Naeini, 2024. "Studying phonon coherence with a quantum sensor," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    7. Jake Rochman & Tian Xie & John G. Bartholomew & K. C. Schwab & Andrei Faraon, 2023. "Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. M. J. Bereyhi & A. Beccari & R. Groth & S. A. Fedorov & A. Arabmoheghi & T. J. Kippenberg & N. J. Engelsen, 2022. "Hierarchical tensile structures with ultralow mechanical dissipation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. André G. Primo & Pedro V. Pinho & Rodrigo Benevides & Simon Gröblacher & Gustavo S. Wiederhecker & Thiago P. Mayer Alegre, 2023. "Dissipative optomechanics in high-frequency nanomechanical resonators," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Midya Parto & Christian Leefmans & James Williams & Franco Nori & Alireza Marandi, 2023. "Non-Abelian effects in dissipative photonic topological lattices," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Mingcai Xie & Hanyu Liu & Sushu Wan & Xuxing Lu & Daocheng Hong & Yu Du & Weiqing Yang & Zhihong Wei & Susu Fang & Chen-Lei Tao & Dan Xu & Boyang Wang & Siyu Lu & Xue-Jun Wu & Weigao Xu & Michel Orrit, 2022. "Ultrasensitive detection of local acoustic vibrations at room temperature by plasmon-enhanced single-molecule fluorescence," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Peipei Pan & Aixi Chen & Li Deng, 2023. "Improving Mechanical Oscillator Cooling in a Double-Coupled Cavity Optomechanical System with an Optical Parametric Amplifier," Mathematics, MDPI, vol. 11(9), pages 1-12, May.
    13. He, Lipeng & Wang, Shuangjian & Liu, Renwen & Sun, Baoyu & Wang, Junlei & Lin, Jieqiong, 2023. "Design and research of a water energy piezoelectric energy harvester that changes the linear arrangement of magnet," Energy, Elsevier, vol. 284(C).
    14. Hugo Molinares & Bing He & Vitalie Eremeev, 2023. "Transfer of Quantum States and Stationary Quantum Correlations in a Hybrid Optomechanical Network," Mathematics, MDPI, vol. 11(13), pages 1-18, June.
    15. J. M. Kitzman & J. R. Lane & C. Undershute & P. M. Harrington & N. R. Beysengulov & C. A. Mikolas & K. W. Murch & J. Pollanen, 2023. "Phononic bath engineering of a superconducting qubit," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    16. Arjun Iyer & Yadav P. Kandel & Wendao Xu & John M. Nichol & William H. Renninger, 2024. "Coherent optical coupling to surface acoustic wave devices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Juliane Doster & Tirth Shah & Thomas Fösel & Philipp Paulitschke & Florian Marquardt & Eva M. Weig, 2022. "Observing polarization patterns in the collective motion of nanomechanical arrays," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    18. Liu Qiu & Rishabh Sahu & William Hease & Georg Arnold & Johannes M. Fink, 2023. "Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Chiao-Hsuan Wang & Fangxin Li & Liang Jiang, 2022. "Quantum capacities of transducers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Han Zhao & Bingzhao Li & Huan Li & Mo Li, 2022. "Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29115-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.