IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28670-5.html
   My bibliography  Save this article

Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity

Author

Listed:
  • Simon Hönl

    (IBM Research Europe, Zurich)

  • Youri Popoff

    (IBM Research Europe, Zurich
    Swiss Federal Institute of Technology Zurich (ETH Zürich))

  • Daniele Caimi

    (IBM Research Europe, Zurich)

  • Alberto Beccari

    (Swiss Federal Institute of Technology Lausanne (EPFL))

  • Tobias J. Kippenberg

    (Swiss Federal Institute of Technology Lausanne (EPFL))

  • Paul Seidler

    (IBM Research Europe, Zurich)

Abstract

Electrically actuated optomechanical resonators provide a route to quantum-coherent, bidirectional conversion of microwave and optical photons. Such devices could enable optical interconnection of quantum computers based on qubits operating at microwave frequencies. Here we present a platform for microwave-to-optical conversion comprising a photonic crystal cavity made of single-crystal, piezoelectric gallium phosphide integrated on pre-fabricated niobium circuits on an intrinsic silicon substrate. The devices exploit spatially extended, sideband-resolved mechanical breathing modes at ~3.2 GHz, with vacuum optomechanical coupling rates of up to g0/2π ≈ 300 kHz. The mechanical modes are driven by integrated microwave electrodes via the inverse piezoelectric effect. We estimate that the system could achieve an electromechanical coupling rate to a superconducting transmon qubit of ~200 kHz. Our work represents a decisive step towards integration of piezoelectro-optomechanical interfaces with superconducting quantum processors.

Suggested Citation

  • Simon Hönl & Youri Popoff & Daniele Caimi & Alberto Beccari & Tobias J. Kippenberg & Paul Seidler, 2022. "Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28670-5
    DOI: 10.1038/s41467-022-28670-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28670-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28670-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John G. Bartholomew & Jake Rochman & Tian Xie & Jonathan M. Kindem & Andrei Ruskuc & Ioana Craiciu & Mi Lei & Andrei Faraon, 2020. "On-chip coherent microwave-to-optical transduction mediated by ytterbium in YVO4," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    2. Xu Han & Wei Fu & Changchun Zhong & Chang-Ling Zou & Yuntao Xu & Ayed Al Sayem & Mingrui Xu & Sihao Wang & Risheng Cheng & Liang Jiang & Hong X. Tang, 2020. "Cavity piezo-mechanics for superconducting-nanophotonic quantum interface," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    3. Ralf Riedinger & Andreas Wallucks & Igor Marinković & Clemens Löschnauer & Markus Aspelmeyer & Sungkun Hong & Simon Gröblacher, 2018. "Remote quantum entanglement between two micromechanical oscillators," Nature, Nature, vol. 556(7702), pages 473-477, April.
    4. K. J. Satzinger & Y. P. Zhong & H.-S. Chang & G. A. Peairs & A. Bienfait & Ming-Han Chou & A. Y. Cleland & C. R. Conner & É. Dumur & J. Grebel & I. Gutierrez & B. H. November & R. G. Povey & S. J. Whi, 2018. "Quantum control of surface acoustic-wave phonons," Nature, Nature, vol. 563(7733), pages 661-665, November.
    5. Yiwen Chu & Prashanta Kharel & Taekwan Yoon & Luigi Frunzio & Peter T. Rakich & Robert J. Schoelkopf, 2018. "Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator," Nature, Nature, vol. 563(7733), pages 666-670, November.
    6. T. Bagci & A. Simonsen & S. Schmid & L. G. Villanueva & E. Zeuthen & J. Appel & J. M. Taylor & A. Sørensen & K. Usami & A. Schliesser & E. S. Polzik, 2014. "Optical detection of radio waves through a nanomechanical transducer," Nature, Nature, vol. 507(7490), pages 81-85, March.
    7. Jasper Chan & T. P. Mayer Alegre & Amir H. Safavi-Naeini & Jeff T. Hill & Alex Krause & Simon Gröblacher & Markus Aspelmeyer & Oskar Painter, 2011. "Laser cooling of a nanomechanical oscillator into its quantum ground state," Nature, Nature, vol. 478(7367), pages 89-92, October.
    8. L.-M. Duan & M. D. Lukin & J. I. Cirac & P. Zoller, 2001. "Long-distance quantum communication with atomic ensembles and linear optics," Nature, Nature, vol. 414(6862), pages 413-418, November.
    9. Ralf Riedinger & Sungkun Hong & Richard A. Norte & Joshua A. Slater & Juying Shang & Alexander G. Krause & Vikas Anant & Markus Aspelmeyer & Simon Gröblacher, 2016. "Non-classical correlations between single photons and phonons from a mechanical oscillator," Nature, Nature, vol. 530(7590), pages 313-316, February.
    10. Patricio Arrangoiz-Arriola & E. Alex Wollack & Zhaoyou Wang & Marek Pechal & Wentao Jiang & Timothy P. McKenna & Jeremy D. Witmer & Raphaël Laer & Amir H. Safavi-Naeini, 2019. "Resolving the energy levels of a nanomechanical oscillator," Nature, Nature, vol. 571(7766), pages 537-540, July.
    11. Rishabh Sahu & William Hease & Alfredo Rueda & Georg Arnold & Liu Qiu & Johannes M. Fink, 2022. "Quantum-enabled operation of a microwave-optical interface," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    12. Mohammad Mirhosseini & Alp Sipahigil & Mahmoud Kalaee & Oskar Painter, 2020. "Superconducting qubit to optical photon transduction," Nature, Nature, vol. 588(7839), pages 599-603, December.
    13. H. J. Kimble, 2008. "The quantum internet," Nature, Nature, vol. 453(7198), pages 1023-1030, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jake Rochman & Tian Xie & John G. Bartholomew & K. C. Schwab & Andrei Faraon, 2023. "Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Arjun Iyer & Yadav P. Kandel & Wendao Xu & John M. Nichol & William H. Renninger, 2024. "Coherent optical coupling to surface acoustic wave devices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Chiao-Hsuan Wang & Fangxin Li & Liang Jiang, 2022. "Quantum capacities of transducers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Terence Blésin & Wil Kao & Anat Siddharth & Rui N. Wang & Alaina Attanasio & Hao Tian & Sunil A. Bhave & Tobias J. Kippenberg, 2024. "Bidirectional microwave-optical transduction based on integration of high-overtone bulk acoustic resonators and photonic circuits," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Agnetta Y. Cleland & E. Alex Wollack & Amir H. Safavi-Naeini, 2024. "Studying phonon coherence with a quantum sensor," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Jingkun Guo & Jin Chang & Xiong Yao & Simon Gröblacher, 2023. "Active-feedback quantum control of an integrated low-frequency mechanical resonator," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Yannick Seis & Thibault Capelle & Eric Langman & Sampo Saarinen & Eric Planz & Albert Schliesser, 2022. "Ground state cooling of an ultracoherent electromechanical system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. Hugo Molinares & Bing He & Vitalie Eremeev, 2023. "Transfer of Quantum States and Stationary Quantum Correlations in a Hybrid Optomechanical Network," Mathematics, MDPI, vol. 11(13), pages 1-18, June.
    9. J. M. Kitzman & J. R. Lane & C. Undershute & P. M. Harrington & N. R. Beysengulov & C. A. Mikolas & K. W. Murch & J. Pollanen, 2023. "Phononic bath engineering of a superconducting qubit," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    10. Roel Burgwal & Ewold Verhagen, 2023. "Enhanced nonlinear optomechanics in a coupled-mode photonic crystal device," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Germain Tobar & Sreenath K. Manikandan & Thomas Beitel & Igor Pikovski, 2024. "Detecting single gravitons with quantum sensing," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. André G. Primo & Pedro V. Pinho & Rodrigo Benevides & Simon Gröblacher & Gustavo S. Wiederhecker & Thiago P. Mayer Alegre, 2023. "Dissipative optomechanics in high-frequency nanomechanical resonators," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. M. Businger & L. Nicolas & T. Sanchez Mejia & A. Ferrier & P. Goldner & Mikael Afzelius, 2022. "Non-classical correlations over 1250 modes between telecom photons and 979-nm photons stored in 171Yb3+:Y2SiO5," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Valeria Vento & Santiago Tarrago Velez & Anna Pogrebna & Christophe Galland, 2023. "Measurement-induced collective vibrational quantum coherence under spontaneous Raman scattering in a liquid," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    15. Rishabh Sahu & William Hease & Alfredo Rueda & Georg Arnold & Liu Qiu & Johannes M. Fink, 2022. "Quantum-enabled operation of a microwave-optical interface," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    16. Ming-Hao Jiang & Wenyi Xue & Qian He & Yu-Yang An & Xiaodong Zheng & Wen-Jie Xu & Yu-Bo Xie & Yanqing Lu & Shining Zhu & Xiao-Song Ma, 2023. "Quantum storage of entangled photons at telecom wavelengths in a crystal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Tulio Brito Brasil & Valeriy Novikov & Hugo Kerdoncuff & Mikael Lassen & Eugene S. Polzik, 2022. "Two-colour high-purity Einstein-Podolsky-Rosen photonic state," Nature Communications, Nature, vol. 13(1), pages 1-5, December.
    18. Juliane Doster & Tirth Shah & Thomas Fösel & Philipp Paulitschke & Florian Marquardt & Eva M. Weig, 2022. "Observing polarization patterns in the collective motion of nanomechanical arrays," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    19. Liu Qiu & Rishabh Sahu & William Hease & Georg Arnold & Johannes M. Fink, 2023. "Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    20. I-Tung Chen & Bingzhao Li & Seokhyeong Lee & Srivatsa Chakravarthi & Kai-Mei Fu & Mo Li, 2023. "Optomechanical ring resonator for efficient microwave-optical frequency conversion," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28670-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.