IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56454-0.html
   My bibliography  Save this article

Deterministic multi-phonon entanglement between two mechanical resonators on separate substrates

Author

Listed:
  • Ming-Han Chou

    (University of Chicago
    University of Chicago
    AWS Center for Quantum Computing)

  • Hong Qiao

    (University of Chicago)

  • Haoxiong Yan

    (University of Chicago)

  • Gustav Andersson

    (University of Chicago)

  • Christopher R. Conner

    (University of Chicago)

  • Joel Grebel

    (University of Chicago
    Google)

  • Yash J. Joshi

    (University of Chicago)

  • Jacob M. Miller

    (University of Chicago)

  • Rhys G. Povey

    (University of Chicago)

  • Xuntao Wu

    (University of Chicago)

  • Andrew N. Cleland

    (University of Chicago
    Argonne National Laboratory)

Abstract

Mechanical systems have emerged as a compelling platform for applications in quantum information, leveraging advances in the control of phonons, the quanta of mechanical vibrations. Experiments have demonstrated the control and measurement of phonon states in mechanical resonators, and while dual-resonator entanglement has been demonstrated, more complex entangled states remain a challenge. Here, we demonstrate rapid multi-phonon entanglement generation and subsequent tomographic analysis, using a scalable platform comprising two surface acoustic wave resonators on separate substrates, each connected to a superconducting qubit. We synthesize a mechanical Bell state with a fidelity of $${{{{\mathcal{F}}}}}=0.872\pm 0.002$$ F = 0.872 ± 0.002 , and a multi-phonon entangled N = 2 N00N state with a fidelity of $${{{{\mathcal{F}}}}}=0.748\pm 0.008$$ F = 0.748 ± 0.008 . The compact, modular, and scalable platform we demonstrate will enable further advances in the quantum control of complex mechanical systems.

Suggested Citation

  • Ming-Han Chou & Hong Qiao & Haoxiong Yan & Gustav Andersson & Christopher R. Conner & Joel Grebel & Yash J. Joshi & Jacob M. Miller & Rhys G. Povey & Xuntao Wu & Andrew N. Cleland, 2025. "Deterministic multi-phonon entanglement between two mechanical resonators on separate substrates," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56454-0
    DOI: 10.1038/s41467-025-56454-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56454-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56454-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. K. J. Satzinger & Y. P. Zhong & H.-S. Chang & G. A. Peairs & A. Bienfait & Ming-Han Chou & A. Y. Cleland & C. R. Conner & É. Dumur & J. Grebel & I. Gutierrez & B. H. November & R. G. Povey & S. J. Whi, 2018. "Quantum control of surface acoustic-wave phonons," Nature, Nature, vol. 563(7733), pages 661-665, November.
    2. E. Alex Wollack & Agnetta Y. Cleland & Rachel G. Gruenke & Zhaoyou Wang & Patricio Arrangoiz-Arriola & Amir H. Safavi-Naeini, 2022. "Quantum state preparation and tomography of entangled mechanical resonators," Nature, Nature, vol. 604(7906), pages 463-467, April.
    3. Jasper Chan & T. P. Mayer Alegre & Amir H. Safavi-Naeini & Jeff T. Hill & Alex Krause & Simon Gröblacher & Markus Aspelmeyer & Oskar Painter, 2011. "Laser cooling of a nanomechanical oscillator into its quantum ground state," Nature, Nature, vol. 478(7367), pages 89-92, October.
    4. Ralf Riedinger & Andreas Wallucks & Igor Marinković & Clemens Löschnauer & Markus Aspelmeyer & Sungkun Hong & Simon Gröblacher, 2018. "Remote quantum entanglement between two micromechanical oscillators," Nature, Nature, vol. 556(7702), pages 473-477, April.
    5. Yiwen Chu & Prashanta Kharel & Taekwan Yoon & Luigi Frunzio & Peter T. Rakich & Robert J. Schoelkopf, 2018. "Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator," Nature, Nature, vol. 563(7733), pages 666-670, November.
    6. Max Hofheinz & H. Wang & M. Ansmann & Radoslaw C. Bialczak & Erik Lucero & M. Neeley & A. D. O'Connell & D. Sank & J. Wenner & John M. Martinis & A. N. Cleland, 2009. "Synthesizing arbitrary quantum states in a superconducting resonator," Nature, Nature, vol. 459(7246), pages 546-549, May.
    7. Riccardo Manenti & Anton F. Kockum & Andrew Patterson & Tanja Behrle & Joseph Rahamim & Giovanna Tancredi & Franco Nori & Peter J. Leek, 2017. "Circuit quantum acoustodynamics with surface acoustic waves," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
    8. Patricio Arrangoiz-Arriola & E. Alex Wollack & Zhaoyou Wang & Marek Pechal & Wentao Jiang & Timothy P. McKenna & Jeremy D. Witmer & Raphaël Laer & Amir H. Safavi-Naeini, 2019. "Resolving the energy levels of a nanomechanical oscillator," Nature, Nature, vol. 571(7766), pages 537-540, July.
    9. C. F. Ockeloen-Korppi & E. Damskägg & J.-M. Pirkkalainen & M. Asjad & A. A. Clerk & F. Massel & M. J. Woolley & M. A. Sillanpää, 2018. "Stabilized entanglement of massive mechanical oscillators," Nature, Nature, vol. 556(7702), pages 478-482, April.
    10. Mohammad Mirhosseini & Alp Sipahigil & Mahmoud Kalaee & Oskar Painter, 2020. "Superconducting qubit to optical photon transduction," Nature, Nature, vol. 588(7839), pages 599-603, December.
    11. Guanhao Huang & Alberto Beccari & Nils J. Engelsen & Tobias J. Kippenberg, 2024. "Room-temperature quantum optomechanics using an ultralow noise cavity," Nature, Nature, vol. 626(7999), pages 512-516, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Hönl & Youri Popoff & Daniele Caimi & Alberto Beccari & Tobias J. Kippenberg & Paul Seidler, 2022. "Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. J. M. Kitzman & J. R. Lane & C. Undershute & P. M. Harrington & N. R. Beysengulov & C. A. Mikolas & K. W. Murch & J. Pollanen, 2023. "Phononic bath engineering of a superconducting qubit," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Agnetta Y. Cleland & E. Alex Wollack & Amir H. Safavi-Naeini, 2024. "Studying phonon coherence with a quantum sensor," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Yulong Liu & Huanying Sun & Qichun Liu & Haihua Wu & Mika A. Sillanpää & Tiefu Li, 2025. "Degeneracy-breaking and long-lived multimode microwave electromechanical systems enabled by cubic silicon-carbide membrane crystals," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    5. Arjun Iyer & Yadav P. Kandel & Wendao Xu & John M. Nichol & William H. Renninger, 2024. "Coherent optical coupling to surface acoustic wave devices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Yannick Seis & Thibault Capelle & Eric Langman & Sampo Saarinen & Eric Planz & Albert Schliesser, 2022. "Ground state cooling of an ultracoherent electromechanical system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Roel Burgwal & Ewold Verhagen, 2023. "Enhanced nonlinear optomechanics in a coupled-mode photonic crystal device," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Jingkun Guo & Jin Chang & Xiong Yao & Simon Gröblacher, 2023. "Active-feedback quantum control of an integrated low-frequency mechanical resonator," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Germain Tobar & Sreenath K. Manikandan & Thomas Beitel & Igor Pikovski, 2024. "Detecting single gravitons with quantum sensing," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Weitao Yuan & Chenwen Yang & Danmei Zhang & Yang Long & Yongdong Pan & Zheng Zhong & Hong Chen & Jinfeng Zhao & Jie Ren, 2021. "Observation of elastic spin with chiral meta-sources," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    11. Ji-Qian Wang & Zi-Dong Zhang & Si-Yuan Yu & Hao Ge & Kang-Fu Liu & Tao Wu & Xiao-Chen Sun & Le Liu & Hua-Yang Chen & Cheng He & Ming-Hui Lu & Yan-Feng Chen, 2022. "Extended topological valley-locked surface acoustic waves," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Fernando Valadares & Ni-Ni Huang & Kyle Timothy Ng Chu & Aleksandr Dorogov & Weipin Chua & Lingda Kong & Pengtao Song & Yvonne Y. Gao, 2024. "On-demand transposition across light-matter interaction regimes in bosonic cQED," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    13. Hugo Molinares & Bing He & Vitalie Eremeev, 2023. "Transfer of Quantum States and Stationary Quantum Correlations in a Hybrid Optomechanical Network," Mathematics, MDPI, vol. 11(13), pages 1-18, June.
    14. André G. Primo & Pedro V. Pinho & Rodrigo Benevides & Simon Gröblacher & Gustavo S. Wiederhecker & Thiago P. Mayer Alegre, 2023. "Dissipative optomechanics in high-frequency nanomechanical resonators," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Felix Kronowetter & Marcus Maeder & Yan Kei Chiang & Lujun Huang & Johannes D. Schmid & Sebastian Oberst & David A. Powell & Steffen Marburg, 2023. "Realistic prediction and engineering of high-Q modes to implement stable Fano resonances in acoustic devices," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    16. Juliane Doster & Tirth Shah & Thomas Fösel & Philipp Paulitschke & Florian Marquardt & Eva M. Weig, 2022. "Observing polarization patterns in the collective motion of nanomechanical arrays," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    17. Simone Zanotto & Giorgio Biasiol & Paulo V. Santos & Alessandro Pitanti, 2022. "Metamaterial-enabled asymmetric negative refraction of GHz mechanical waves," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Jake Rochman & Tian Xie & John G. Bartholomew & K. C. Schwab & Andrei Faraon, 2023. "Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Lei Shao & Vikrant J. Gokhale & Bo Peng & Penghui Song & Jingjie Cheng & Justin Kuo & Amit Lal & Wen-Ming Zhang & Jason J. Gorman, 2022. "Femtometer-amplitude imaging of coherent super high frequency vibrations in micromechanical resonators," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Chiao-Hsuan Wang & Fangxin Li & Liang Jiang, 2022. "Quantum capacities of transducers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56454-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.