IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52416-0.html
   My bibliography  Save this article

Transvascular transport of nanocarriers for tumor delivery

Author

Listed:
  • Xin Li

    (DWI-Leibniz-Institute for Interactive Materials
    RWTH Aachen University
    Tongji University)

  • Yong Hu

    (Tongji University)

  • Xingcai Zhang

    (Stanford University)

  • Xiangyang Shi

    (Donghua University)

  • Wolfgang J. Parak

    (University of Hamburg)

  • Andrij Pich

    (DWI-Leibniz-Institute for Interactive Materials
    RWTH Aachen University
    Maastricht University)

Abstract

Nanocarriers (NCs) play a crucial role in delivering theranostic agents to tumors, making them a pivotal focus of research. However, the persistently low delivery efficiency of engineered NCs has been a significant challenge in the advancement of nanomedicine, stirring considerable debate. Transvascular transport is a critical pathway for NC delivery from vessels to tumors, yet a comprehensive understanding of the interactions between NCs and vascular systems remains elusive. In recent years, considerable efforts have been invested in elucidating the transvascular transport mechanisms of NCs, leading to promising advancements in tumor delivery and theranostics. In this context, we highlight various delivery mechanisms, including the enhanced permeability and retention effect, cooperative immune-driven effect, active transcytosis, and cell/bacteria-mediated delivery. Furthermore, we explore corresponding strategies aimed at enhancing transvascular transport of NCs for efficient tumor delivery. These approaches offer intriguing solutions spanning physicochemical, biological, and pharmacological domains to improve delivery and therapeutic outcomes. Additionally, we propose a forward-looking delivery framework that relies on advanced tumor/vessel models, high-throughput NC libraries, nano-bio interaction datasets, and artificial intelligence, which aims to guide the design of next-generation carriers and implementation strategies for optimized delivery.

Suggested Citation

  • Xin Li & Yong Hu & Xingcai Zhang & Xiangyang Shi & Wolfgang J. Parak & Andrij Pich, 2024. "Transvascular transport of nanocarriers for tumor delivery," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52416-0
    DOI: 10.1038/s41467-024-52416-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52416-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52416-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiali Tang & Binbin Chu & Jinhua Wang & Bin Song & Yuanyuan Su & Houyu Wang & Yao He, 2019. "Multifunctional nanoagents for ultrasensitive imaging and photoactive killing of Gram-negative and Gram-positive bacteria," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    2. Vishnu Raman & Nele Van Dessel & Christopher L. Hall & Victoria E. Wetherby & Samantha A. Whitney & Emily L. Kolewe & Shoshana M. K. Bloom & Abhinav Sharma & Jeanne A. Hardy & Mathieu Bollen & Aleyde , 2021. "Intracellular delivery of protein drugs with an autonomously lysing bacterial system reduces tumor growth and metastases," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    3. Rong Sun & Mingzhu Liu & Jianping Lu & Binbin Chu & Yunmin Yang & Bin Song & Houyu Wang & Yao He, 2022. "Bacteria loaded with glucose polymer and photosensitive ICG silicon-nanoparticles for glioblastoma photothermal immunotherapy," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Min Li & Shuya Li & Han Zhou & Xinfeng Tang & Yi Wu & Wei Jiang & Zhigang Tian & Xuechang Zhou & Xianzhu Yang & Yucai Wang, 2020. "Chemotaxis-driven delivery of nano-pathogenoids for complete eradication of tumors post-phototherapy," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    5. Zvi Yaari & Dana da Silva & Assaf Zinger & Evgeniya Goldman & Ashima Kajal & Rafi Tshuva & Efrat Barak & Nitsan Dahan & Dov Hershkovitz & Mor Goldfeder & Janna Shainsky Roitman & Avi Schroeder, 2016. "Theranostic barcoded nanoparticles for personalized cancer medicine," Nature Communications, Nature, vol. 7(1), pages 1-10, December.
    6. Xiangdong Xue & Yee Huang & Ruonan Bo & Bei Jia & Hao Wu & Ye Yuan & Zhongling Wang & Zhao Ma & Di Jing & Xiaobao Xu & Weimin Yu & Tzu-yin Lin & Yuanpei Li, 2018. "Trojan Horse nanotheranostics with dual transformability and multifunctionality for highly effective cancer treatment," Nature Communications, Nature, vol. 9(1), pages 1-15, December.
    7. Alexandre Albanese & Alan K. Lam & Edward A. Sykes & Jonathan V. Rocheleau & Warren C.W. Chan, 2013. "Tumour-on-a-chip provides an optical window into nanoparticle tissue transport," Nature Communications, Nature, vol. 4(1), pages 1-8, December.
    8. Ewen Callaway & Miryam Naddaf, 2023. "Pioneers of mRNA COVID vaccines win medicine Nobel," Nature, Nature, vol. 622(7982), pages 228-229, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Zheng & Qiuya Li & Laiping Fang & Xiaolu Cai & Yan Liu & Yanhong Duo & Bowen Li & Zhengyu Wu & Boxi Shen & Yang Bai & Shi-Xiang Cheng & Xingcai Zhang, 2024. "Microorganism microneedle micro-engine depth drug delivery," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian Zhang & Bin Song & Yanan Xu & Yunmin Yang & Jian Ji & Wenjun Cao & Jianping Lu & Jiali Ding & Haiting Cao & Binbin Chu & Jiaxu Hong & Houyu Wang & Yao He, 2023. "In vivo bioluminescence imaging of natural bacteria within deep tissues via ATP-binding cassette sugar transporter," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Xin Li & Tuying Yong & Zhaohan Wei & Nana Bie & Xiaoqiong Zhang & Guiting Zhan & Jianye Li & Jiaqi Qin & Jingjing Yu & Bixiang Zhang & Lu Gan & Xiangliang Yang, 2022. "Reversing insufficient photothermal therapy-induced tumor relapse and metastasis by regulating cancer-associated fibroblasts," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Yunmin Yang & Binbin Chu & Jiayi Cheng & Jiali Tang & Bin Song & Houyu Wang & Yao He, 2022. "Bacteria eat nanoprobes for aggregation-enhanced imaging and killing diverse microorganisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Jinhu Liu & Huajun Zhao & Tong Gao & Xinyan Huang & Shujun Liu & Meichen Liu & Weiwei Mu & Shuang Liang & Shunli Fu & Shijun Yuan & Qinglin Yang & Panpan Gu & Nan Li & Qingping Ma & Jie Liu & Xinke Zh, 2024. "Glypican-3-targeted macrophages delivering drug-loaded exosomes offer efficient cytotherapy in mouse models of solid tumours," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    5. Xiaoqian Ma & Nuo Lin & Qing Yang & Peifei Liu & Haizhen Ding & Mengjiao Xu & Fangfang Ren & Zhiyang Shen & Ke Hu & Shanshan Meng & Hongmin Chen, 2024. "Biodegradable copper-iodide clusters modulate mitochondrial function and suppress tumor growth under ultralow-dose X-ray irradiation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Songlei Zhou & Yukun Huang & Yu Chen & Yipu Liu & Laozhi Xie & Yang You & Shiqiang Tong & Jianpei Xu & Gan Jiang & Qingxiang Song & Ni Mei & Fenfen Ma & Xiaoling Gao & Hongzhuan Chen & Jun Chen, 2023. "Reprogramming systemic and local immune function to empower immunotherapy against glioblastoma," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    7. Lei Ge & Yikai Tang & Chongzhi Wang & Jian Chen & Hui Mao & Xiqun Jiang, 2024. "A light-activatable theranostic combination for ratiometric hypoxia imaging and oxygen-deprived drug activity enhancement," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Ke-Fei Xu & Shun-Yu Wu & Zihao Wang & Yuxin Guo & Ya-Xuan Zhu & Chengcheng Li & Bai-Hui Shan & Xinping Zhang & Xiaoyang Liu & Fu-Gen Wu, 2024. "Hyperbaric oxygen enhances tumor penetration and accumulation of engineered bacteria for synergistic photothermal immunotherapy," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    9. Milotti, Edoardo & Vyshemirsky, Vladislav & Stella, Sabrina & Dogo, Federico & Chignola, Roberto, 2017. "Analysis of the fluctuations of the tumour/host interface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 587-594.
    10. Imran Noorani & Jorge Rosa, 2023. "Breaking barriers for glioblastoma with a path to enhanced drug delivery," Nature Communications, Nature, vol. 14(1), pages 1-4, December.
    11. Rong Sun & Mingzhu Liu & Jianping Lu & Binbin Chu & Yunmin Yang & Bin Song & Houyu Wang & Yao He, 2022. "Bacteria loaded with glucose polymer and photosensitive ICG silicon-nanoparticles for glioblastoma photothermal immunotherapy," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Jiaye Liu & Yang Wang & Chunyang Mu & Meng Li & Kewei Li & Shan Li & Wenshuang Wu & Lingyao Du & Xiaoyun Zhang & Chuan Li & Wei Peng & Junyi Shen & Yang Liu & Dujiang Yang & Kaixiang Zhang & Qingyang , 2022. "Pancreatic tumor eradication via selective Pin1 inhibition in cancer-associated fibroblasts and T lymphocytes engagement," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Dinh-Huy Nguyen & Ari Chong & Yeongjin Hong & Jung-Joon Min, 2023. "Bioengineering of bacteria for cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-5, December.
    14. Qin Wang & Yi Zhu & Bin Song & Rong Fu & Yanfeng Zhou, 2022. "The In Vivo Toxicity Assessments of Water-Dispersed Fluorescent Silicon Nanoparticles in Caenorhabditis elegans," IJERPH, MDPI, vol. 19(7), pages 1-13, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52416-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.