IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28920-6.html
   My bibliography  Save this article

Bacteria eat nanoprobes for aggregation-enhanced imaging and killing diverse microorganisms

Author

Listed:
  • Yunmin Yang

    (Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University)

  • Binbin Chu

    (Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University)

  • Jiayi Cheng

    (Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University)

  • Jiali Tang

    (Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University)

  • Bin Song

    (Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University)

  • Houyu Wang

    (Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University)

  • Yao He

    (Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University)

Abstract

Currently optical-based techniques for in vivo microbial population imaging are limited by low imaging depth and highly light-scattering tissue; and moreover, are generally effective against only one specific group of bacteria. Here, we introduce an imaging and therapy strategy, in which different bacteria actively eat the glucose polymer (GP)-modified gold nanoparticles through ATP-binding cassette (ABC) transporter pathway, followed by laser irradiation-mediated aggregation in the bacterial cells. As a result, the aggregates display ~15.2-fold enhancement in photoacoustic signals and ~3.0-fold enhancement in antibacterial rate compared with non-aggregated counterparts. Significantly, the developed strategy allows ultrasensitive imaging of bacteria in vivo as low ~105 colony-forming unit (CFU), which is around two orders of magnitude lower than most optical contrast agents. We further demonstrate the developed strategy enables the detection of ~107 CFU bacteria residing within tumour or gut. This technique enables visualization and treatment of diverse bacteria, setting the crucial step forward the study of microbial ecosystem.

Suggested Citation

  • Yunmin Yang & Binbin Chu & Jiayi Cheng & Jiali Tang & Bin Song & Houyu Wang & Yao He, 2022. "Bacteria eat nanoprobes for aggregation-enhanced imaging and killing diverse microorganisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28920-6
    DOI: 10.1038/s41467-022-28920-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28920-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28920-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. Omar Din & Tal Danino & Arthur Prindle & Matt Skalak & Jangir Selimkhanov & Kaitlin Allen & Ellixis Julio & Eta Atolia & Lev S. Tsimring & Sangeeta N. Bhatia & Jeff Hasty, 2016. "Synchronized cycles of bacterial lysis for in vivo delivery," Nature, Nature, vol. 536(7614), pages 81-85, August.
    2. Jiali Tang & Binbin Chu & Jinhua Wang & Bin Song & Yuanyuan Su & Houyu Wang & Yao He, 2019. "Multifunctional nanoagents for ultrasensitive imaging and photoactive killing of Gram-negative and Gram-positive bacteria," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    3. Aimen Zlitni & Gayatri Gowrishankar & Idan Steinberg & Tom Haywood & Sanjiv Sam Gambhir, 2020. "Maltotriose-based probes for fluorescence and photoacoustic imaging of bacterial infections," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    4. Yu Imai & Kirsten J. Meyer & Akira Iinishi & Quentin Favre-Godal & Robert Green & Sylvie Manuse & Mariaelena Caboni & Miho Mori & Samantha Niles & Meghan Ghiglieri & Chandrashekhar Honrao & Xiaoyu Ma , 2019. "A new antibiotic selectively kills Gram-negative pathogens," Nature, Nature, vol. 576(7787), pages 459-464, December.
    5. Claudia Errico & Juliette Pierre & Sophie Pezet & Yann Desailly & Zsolt Lenkei & Olivier Couture & Mickael Tanter, 2015. "Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging," Nature, Nature, vol. 527(7579), pages 499-502, November.
    6. Jacopo Bertolotti & Elbert G. van Putten & Christian Blum & Ad Lagendijk & Willem L. Vos & Allard P. Mosk, 2012. "Non-invasive imaging through opaque scattering layers," Nature, Nature, vol. 491(7423), pages 232-234, November.
    7. Marleen van Oosten & Tina Schäfer & Joost A. C. Gazendam & Knut Ohlsen & Eleni Tsompanidou & Marcus C. de Goffau & Hermie J. M. Harmsen & Lucia M. A. Crane & Ed Lim & Kevin P. Francis & Lael Cheung & , 2013. "Real-time in vivo imaging of invasive- and biomaterial-associated bacterial infections using fluorescently labelled vancomycin," Nature Communications, Nature, vol. 4(1), pages 1-8, December.
    8. Marcelo C. Sousa, 2019. "New antibiotics target the outer membrane of bacteria," Nature, Nature, vol. 576(7787), pages 389-390, December.
    9. Raymond W. Bourdeau & Audrey Lee-Gosselin & Anupama Lakshmanan & Arash Farhadi & Sripriya Ravindra Kumar & Suchita P. Nety & Mikhail G. Shapiro, 2018. "Acoustic reporter genes for noninvasive imaging of microorganisms in mammalian hosts," Nature, Nature, vol. 553(7686), pages 86-90, January.
    10. Gregory D. Poore & Evguenia Kopylova & Qiyun Zhu & Carolina Carpenter & Serena Fraraccio & Stephen Wandro & Tomasz Kosciolek & Stefan Janssen & Jessica Metcalf & Se Jin Song & Jad Kanbar & Sandrine Mi, 2020. "RETRACTED ARTICLE: Microbiome analyses of blood and tissues suggest cancer diagnostic approach," Nature, Nature, vol. 579(7800), pages 567-574, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qian Zhang & Bin Song & Yanan Xu & Yunmin Yang & Jian Ji & Wenjun Cao & Jianping Lu & Jiali Ding & Haiting Cao & Binbin Chu & Jiaxu Hong & Houyu Wang & Yao He, 2023. "In vivo bioluminescence imaging of natural bacteria within deep tissues via ATP-binding cassette sugar transporter," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Zehui Wang & Anhua Wu & Wen Cheng & Yuhe Li & Dingxuan Li & Lai Wang & Xinfu Zhang & Yi Xiao, 2023. "Adoptive macrophage directed photodynamic therapy of multidrug-resistant bacterial infection," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Candice R. Gurbatri & Georgette A. Radford & Laura Vrbanac & Jongwon Im & Elaine M. Thomas & Courtney Coker & Samuel R. Taylor & YoungUk Jang & Ayelet Sivan & Kyu Rhee & Anas A. Saleh & Tiffany Chien , 2024. "Engineering tumor-colonizing E. coli Nissle 1917 for detection and treatment of colorectal neoplasia," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Runrun Wu & Jeremy W. Bakelar & Karl Lundquist & Zijian Zhang & Katie M. Kuo & David Ryoo & Yui Tik Pang & Chen Sun & Tommi White & Thomas Klose & Wen Jiang & James C. Gumbart & Nicholas Noinaj, 2021. "Plasticity within the barrel domain of BamA mediates a hybrid-barrel mechanism by BAM," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    3. Yuhao Chen & Meng Du & Zhen Yuan & Zhiyi Chen & Fei Yan, 2022. "Spatiotemporal control of engineered bacteria to express interferon-γ by focused ultrasound for tumor immunotherapy," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Leandro C. Hermida & E. Michael Gertz & Eytan Ruppin, 2022. "Predicting cancer prognosis and drug response from the tumor microbiome," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. YiRang Shin & Matthew R. Lowerison & Yike Wang & Xi Chen & Qi You & Zhijie Dong & Mark A. Anastasio & Pengfei Song, 2024. "Context-aware deep learning enables high-efficacy localization of high concentration microbubbles for super-resolution ultrasound localization microscopy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Christopher Jonkergouw & Ngong Kodiah Beyeh & Ekaterina Osmekhina & Katarzyna Leskinen & S. Maryamdokht Taimoory & Dmitrii Fedorov & Eduardo Anaya-Plaza & Mauri A. Kostiainen & John F. Trant & Robin H, 2023. "Repurposing host-guest chemistry to sequester virulence and eradicate biofilms in multidrug resistant Pseudomonas aeruginosa and Acinetobacter baumannii," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Parthasarathi Rath & Adrian Hermann & Ramona Schaefer & Elia Agustoni & Jean-Marie Vonach & Martin Siegrist & Christian Miscenic & Andreas Tschumi & Doris Roth & Christoph Bieniossek & Sebastian Hille, 2023. "High-throughput screening of BAM inhibitors in native membrane environment," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Lei Zhu & Fernando Soldevila & Claudio Moretti & Alexandra d’Arco & Antoine Boniface & Xiaopeng Shao & Hilton B. Aguiar & Sylvain Gigan, 2022. "Large field-of-view non-invasive imaging through scattering layers using fluctuating random illumination," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    9. Yurou Jia & Suying Zhang & Xuan Zhang & Houyou Long & Caibin Xu & Yechao Bai & Ying Cheng & Dajian Wu & Mingxi Deng & Cheng-Wei Qiu & Xiaojun Liu, 2024. "Compact meta-differentiator for achieving isotropically high-contrast ultrasonic imaging," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Zhipeng Yu & Huanhao Li & Wannian Zhao & Po-Sheng Huang & Yu-Tsung Lin & Jing Yao & Wenzhao Li & Qi Zhao & Pin Chieh Wu & Bo Li & Patrice Genevet & Qinghua Song & Puxiang Lai, 2024. "High-security learning-based optical encryption assisted by disordered metasurface," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Zhuo Cheng & Bei-Bei He & Kangfan Lei & Ying Gao & Yuqi Shi & Zheng Zhong & Hongyan Liu & Runze Liu & Haili Zhang & Song Wu & Wenxuan Zhang & Xiaoyu Tang & Yong-Xin Li, 2024. "Rule-based omics mining reveals antimicrobial macrocyclic peptides against drug-resistant clinical isolates," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Sungsam Kang & Yongwoo Kwon & Hojun Lee & Seho Kim & Jin Hee Hong & Seokchan Yoon & Wonshik Choi, 2023. "Tracing multiple scattering trajectories for deep optical imaging in scattering media," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Jun Zhou & Maoyi Li & Qiufang Chen & Xinjie Li & Linfu Chen & Ziliang Dong & Wenjun Zhu & Yang Yang & Zhuang Liu & Qian Chen, 2022. "Programmable probiotics modulate inflammation and gut microbiota for inflammatory bowel disease treatment after effective oral delivery," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Qian Zhang & Bin Song & Yanan Xu & Yunmin Yang & Jian Ji & Wenjun Cao & Jianping Lu & Jiali Ding & Haiting Cao & Binbin Chu & Jiaxu Hong & Houyu Wang & Yao He, 2023. "In vivo bioluminescence imaging of natural bacteria within deep tissues via ATP-binding cassette sugar transporter," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Ye Yang & Yaozhang Yang & Dingyuan Liu & Yuanyuan Wang & Minqiao Lu & Qi Zhang & Jiqing Huang & Yongchuan Li & Teng Ma & Fei Yan & Hairong Zheng, 2023. "In-vivo programmable acoustic manipulation of genetically engineered bacteria," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Filip Ivanovski & Maja Meško & Tina Lebar & Marko Rupnik & Duško Lainšček & Miha Gradišek & Roman Jerala & Mojca Benčina, 2024. "Ultrasound-mediated spatial and temporal control of engineered cells in vivo," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Florian Willomitzer & Prasanna V. Rangarajan & Fengqiang Li & Muralidhar M. Balaji & Marc P. Christensen & Oliver Cossairt, 2021. "Fast non-line-of-sight imaging with high-resolution and wide field of view using synthetic wavelength holography," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    18. Yaoyao Shi & Wei Sheng & Yangyang Fu & Youwen Liu, 2023. "Overlapping speckle correlation algorithm for high-resolution imaging and tracking of objects in unknown scattering media," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Xosé Luís Deán-Ben & Justine Robin & Daniil Nozdriukhin & Ruiqing Ni & Jim Zhao & Chaim Glück & Jeanne Droux & Juan Sendón-Lago & Zhenyue Chen & Quanyu Zhou & Bruno Weber & Susanne Wegener & Anxo Vida, 2023. "Deep optoacoustic localization microangiography of ischemic stroke in mice," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Lucas Henrion & Juan Andres Martinez & Vincent Vandenbroucke & Mathéo Delvenne & Samuel Telek & Andrew Zicler & Alexander Grünberger & Frank Delvigne, 2023. "Fitness cost associated with cell phenotypic switching drives population diversification dynamics and controllability," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28920-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.