IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37887-x.html
   My bibliography  Save this article

Wafer-scale high-κ dielectrics for two-dimensional circuits via van der Waals integration

Author

Listed:
  • Zheyi Lu

    (Hunan University)

  • Yang Chen

    (Hunan University)

  • Weiqi Dang

    (Hunan University)

  • Lingan Kong

    (Hunan University)

  • Quanyang Tao

    (Hunan University)

  • Likuan Ma

    (Hunan University)

  • Donglin Lu

    (Hunan University)

  • Liting Liu

    (Hunan University)

  • Wanying Li

    (Hunan University)

  • Zhiwei Li

    (Hunan University)

  • Xiao Liu

    (Hunan University)

  • Yiliu Wang

    (Hunan University)

  • Xidong Duan

    (Hunan University)

  • Lei Liao

    (Hunan University)

  • Yuan Liu

    (Hunan University)

Abstract

The practical application of two-dimensional (2D) semiconductors for high-performance electronics requires the integration with large-scale and high-quality dielectrics—which however have been challenging to deposit to date, owing to their dangling-bonds-free surface. Here, we report a dry dielectric integration strategy that enables the transfer of wafer-scale and high-κ dielectrics on top of 2D semiconductors. By utilizing an ultra-thin buffer layer, sub-3 nm thin Al2O3 or HfO2 dielectrics could be pre-deposited and then mechanically dry-transferred on top of MoS2 monolayers. The transferred ultra-thin dielectric film could retain wafer-scale flatness and uniformity without any cracks, demonstrating a capacitance up to 2.8 μF/cm2, equivalent oxide thickness down to 1.2 nm, and leakage currents of ~10−7 A/cm2. The fabricated top-gate MoS2 transistors showed intrinsic properties without doping effects, exhibiting on-off ratios of ~107, subthreshold swing down to 68 mV/dec, and lowest interface states of 7.6×109 cm−2 eV−1. We also show that the scalable top-gate arrays can be used to construct functional logic gates. Our study provides a feasible route towards the vdW integration of high-κ dielectric films using an industry-compatible ALD process with well-controlled thickness, uniformity and scalability.

Suggested Citation

  • Zheyi Lu & Yang Chen & Weiqi Dang & Lingan Kong & Quanyang Tao & Likuan Ma & Donglin Lu & Liting Liu & Wanying Li & Zhiwei Li & Xiao Liu & Yiliu Wang & Xidong Duan & Lei Liao & Yuan Liu, 2023. "Wafer-scale high-κ dielectrics for two-dimensional circuits via van der Waals integration," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37887-x
    DOI: 10.1038/s41467-023-37887-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37887-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37887-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Massimiliano Stengel & Nicola A. Spaldin, 2006. "Origin of the dielectric dead layer in nanoscale capacitors," Nature, Nature, vol. 443(7112), pages 679-682, October.
    2. Angus I. Kingon & Jon-Paul Maria & S. K. Streiffer, 2000. "Alternative dielectrics to silicon dioxide for memory and logic devices," Nature, Nature, vol. 406(6799), pages 1032-1038, August.
    3. Li Wang & Xiaozhi Xu & Leining Zhang & Ruixi Qiao & Muhong Wu & Zhichang Wang & Shuai Zhang & Jing Liang & Zhihong Zhang & Zhibin Zhang & Wang Chen & Xuedong Xie & Junyu Zong & Yuwei Shan & Yi Guo & M, 2019. "Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper," Nature, Nature, vol. 570(7759), pages 91-95, June.
    4. Yuan Liu & Jian Guo & Enbo Zhu & Lei Liao & Sung-Joon Lee & Mengning Ding & Imran Shakir & Vincent Gambin & Yu Huang & Xiangfeng Duan, 2018. "Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions," Nature, Nature, vol. 557(7707), pages 696-700, May.
    5. Tse-An Chen & Chih-Piao Chuu & Chien-Chih Tseng & Chao-Kai Wen & H.-S. Philip Wong & Shuangyuan Pan & Rongtan Li & Tzu-Ang Chao & Wei-Chen Chueh & Yanfeng Zhang & Qiang Fu & Boris I. Yakobson & Wen-Ha, 2020. "Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111)," Nature, Nature, vol. 579(7798), pages 219-223, March.
    6. D. A. Muller & T. Sorsch & S. Moccio & F. H. Baumann & K. Evans-Lutterodt & G. Timp, 1999. "The electronic structure at the atomic scale of ultrathin gate oxides," Nature, Nature, vol. 399(6738), pages 758-761, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiabiao Chen & Zhaochao Liu & Xinyue Dong & Zhansheng Gao & Yuxuan Lin & Yuyu He & Yingnan Duan & Tonghuai Cheng & Zhengyang Zhou & Huixia Fu & Feng Luo & Jinxiong Wu, 2023. "Vertically grown ultrathin Bi2SiO5 as high-κ single-crystalline gate dielectric," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junzhu Li & Abdus Samad & Yue Yuan & Qingxiao Wang & Mohamed Nejib Hedhili & Mario Lanza & Udo Schwingenschlögl & Iwnetim Abate & Deji Akinwande & Zheng Liu & Bo Tian & Xixiang Zhang, 2024. "Single-crystal hBN Monolayers from Aligned Hexagonal Islands," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Lu Li & Qinqin Wang & Fanfan Wu & Qiaoling Xu & Jinpeng Tian & Zhiheng Huang & Qinghe Wang & Xuan Zhao & Qinghua Zhang & Qinkai Fan & Xiuzhen Li & Yalin Peng & Yangkun Zhang & Kunshan Ji & Aomiao Zhi , 2024. "Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Su-Beom Song & Sangho Yoon & So Young Kim & Sera Yang & Seung-Young Seo & Soonyoung Cha & Hyeon-Woo Jeong & Kenji Watanabe & Takashi Taniguchi & Gil-Ho Lee & Jun Sung Kim & Moon-Ho Jo & Jonghwan Kim, 2021. "Deep-ultraviolet electroluminescence and photocurrent generation in graphene/hBN/graphene heterostructures," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Jiabiao Chen & Zhaochao Liu & Xinyue Dong & Zhansheng Gao & Yuxuan Lin & Yuyu He & Yingnan Duan & Tonghuai Cheng & Zhengyang Zhou & Huixia Fu & Feng Luo & Jinxiong Wu, 2023. "Vertically grown ultrathin Bi2SiO5 as high-κ single-crystalline gate dielectric," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Peiming Zheng & Wenya Wei & Zhihua Liang & Biao Qin & Jinpeng Tian & Jinhuan Wang & Ruixi Qiao & Yunlong Ren & Junting Chen & Chen Huang & Xu Zhou & Guangyu Zhang & Zhilie Tang & Dapeng Yu & Feng Ding, 2023. "Universal epitaxy of non-centrosymmetric two-dimensional single-crystal metal dichalcogenides," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Fankai Zeng & Ran Wang & Wenya Wei & Zuo Feng & Quanlin Guo & Yunlong Ren & Guoliang Cui & Dingxin Zou & Zhensheng Zhang & Song Liu & Kehai Liu & Ying Fu & Jinzong Kou & Li Wang & Xu Zhou & Zhilie Tan, 2023. "Stamped production of single-crystal hexagonal boron nitride monolayers on various insulating substrates," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. Yaoqiang Zhou & Lei Tong & Zefeng Chen & Li Tao & Yue Pang & Jian-Bin Xu, 2023. "Contact-engineered reconfigurable two-dimensional Schottky junction field-effect transistor with low leakage currents," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Hyeongwoo Lee & Sujeong Kim & Seonhye Eom & Gangseon Ji & Soo Ho Choi & Huitae Joo & Jinhyuk Bae & Ki Kang Kim & Vasily Kravtsov & Hyeong-Ryeol Park & Kyoung-Duck Park, 2024. "Quantum tunneling high-speed nano-excitonic modulator," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    9. Gyuho Myeong & Wongil Shin & Kyunghwan Sung & Seungho Kim & Hongsik Lim & Boram Kim & Taehyeok Jin & Jihoon Park & Taehun Lee & Michael S. Fuhrer & Kenji Watanabe & Takashi Taniguchi & Fei Liu & Sungj, 2022. "Dirac-source diode with sub-unity ideality factor," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    10. Xiaodong Zhang & Chenxi Huang & Zeyu Li & Jun Fu & Jiaran Tian & Zhuping Ouyang & Yuliang Yang & Xiang Shao & Yulei Han & Zhenhua Qiao & Hualing Zeng, 2024. "Reliable wafer-scale integration of two-dimensional materials and metal electrodes with van der Waals contacts," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Xue-Guang Chen & Linhan Lin & Guan-Yao Huang & Xiao-Mei Chen & Xiao-Ze Li & Yun-Ke Zhou & Yixuan Zou & Tairan Fu & Peng Li & Zhengcao Li & Hong-Bo Sun, 2024. "Optofluidic crystallithography for directed growth of single-crystalline halide perovskites," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Taewoo Ha & Yu-Seong Seo & Teun-Teun Kim & Bipin Lamichhane & Young-Hoon Kim & Su Jae Kim & Yousil Lee & Jong Chan Kim & Sang Eon Park & Kyung Ik Sim & Jae Hoon Kim & Yong In Kim & Seon Je Kim & Hu Yo, 2023. "Coherent consolidation of trillions of nucleations for mono-atom step-level flat surfaces," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Chenxinyu Pan & Yuanbiao Tong & Haoliang Qian & Alexey V. Krasavin & Jialin Li & Jiajie Zhu & Yiyun Zhang & Bowen Cui & Zhiyong Li & Chenming Wu & Lufang Liu & Linjun Li & Xin Guo & Anatoly V. Zayats , 2024. "Large area single crystal gold of single nanometer thickness for nanophotonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Xiaokun Yang & Rui He & Zheyi Lu & Yang Chen & Liting Liu & Donglin Lu & Likuan Ma & Quanyang Tao & Lingan Kong & Zhaojing Xiao & Songlong Liu & Zhiwei Li & Shuimei Ding & Xiao Liu & Yunxin Li & Yiliu, 2024. "Large-scale sub-5-nm vertical transistors by van der Waals integration," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Yanghang Pan & Xinzhu Wang & Weiyang Zhang & Lingyu Tang & Zhangyan Mu & Cheng Liu & Bailin Tian & Muchun Fei & Yamei Sun & Huanhuan Su & Libo Gao & Peng Wang & Xiangfeng Duan & Jing Ma & Mengning Din, 2022. "Boosting the performance of single-atom catalysts via external electric field polarization," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Liting Liu & Yang Chen & Long Chen & Biao Xie & Guoli Li & Lingan Kong & Quanyang Tao & Zhiwei Li & Xiaokun Yang & Zheyi Lu & Likuan Ma & Donglin Lu & Xiangdong Yang & Yuan Liu, 2024. "Ultrashort vertical-channel MoS2 transistor using a self-aligned contact," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    17. Lingxin Luo & Lingxiang Hou & Xueping Cui & Pengxin Zhan & Ping He & Chuying Dai & Ruian Li & Jichen Dong & Ye Zou & Guoming Liu & Yanpeng Liu & Jian Zheng, 2024. "Self-condensation-assisted chemical vapour deposition growth of atomically two-dimensional MOF single-crystals," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    18. Jun Zhou & Guitao Zhang & Wenhui Wang & Qian Chen & Weiwei Zhao & Hongwei Liu & Bei Zhao & Zhenhua Ni & Junpeng Lu, 2024. "Phase-engineered synthesis of atomically thin te single crystals with high on-state currents," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Dan, Atasi & Barshilia, Harish C. & Chattopadhyay, Kamanio & Basu, Bikramjit, 2017. "Solar energy absorption mediated by surface plasma polaritons in spectrally selective dielectric-metal-dielectric coatings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1050-1077.
    20. Ramaraj Sukanya & Tara N. Barwa & Yiran Luo & Eithne Dempsey & Carmel B. Breslin, 2022. "Emerging Layered Materials and Their Applications in the Corrosion Protection of Metals and Alloys," Sustainability, MDPI, vol. 14(7), pages 1-28, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37887-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.