IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47133-7.html
   My bibliography  Save this article

Large area single crystal gold of single nanometer thickness for nanophotonics

Author

Listed:
  • Chenxinyu Pan

    (Zhejiang University)

  • Yuanbiao Tong

    (Zhejiang University)

  • Haoliang Qian

    (Zhejiang University)

  • Alexey V. Krasavin

    (King’s College London)

  • Jialin Li

    (Zhejiang University)

  • Jiajie Zhu

    (Zhejiang University)

  • Yiyun Zhang

    (Zhejiang University)

  • Bowen Cui

    (Zhejiang University)

  • Zhiyong Li

    (Zhejiang University
    Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging
    Jiaxing Research Institute Zhejiang University)

  • Chenming Wu

    (Zhejiang University)

  • Lufang Liu

    (Zhejiang University)

  • Linjun Li

    (Zhejiang University
    Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging
    Jiaxing Research Institute Zhejiang University)

  • Xin Guo

    (Zhejiang University
    Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging
    Jiaxing Research Institute Zhejiang University)

  • Anatoly V. Zayats

    (King’s College London)

  • Limin Tong

    (Zhejiang University
    Shanxi University)

  • Pan Wang

    (Zhejiang University
    Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging
    Jiaxing Research Institute Zhejiang University)

Abstract

Two-dimensional single crystal metals, in which the behavior of highly confined optical modes is intertwined with quantum phenomena, are highly sought after for next-generation technologies. Here, we report large area (>104 μm2), single crystal two-dimensional gold flakes (2DGFs) with thicknesses down to a single nanometer level, employing an atomic-level precision chemical etching approach. The decrease of the thickness down to such scales leads to the quantization of the electronic states, endowing 2DGFs with quantum-confinement-augmented optical nonlinearity, particularly leading to more than two orders of magnitude enhancement in harmonic generation compared with their thick polycrystalline counterparts. The nanometer-scale thickness and single crystal quality makes 2DGFs a promising platform for realizing plasmonic nanostructures with nanoscale optical confinement. This is demonstrated by patterning 2DGFs into nanoribbon arrays, exhibiting strongly confined near infrared plasmonic resonances with high quality factors. The developed 2DGFs provide an emerging platform for nanophotonic research and open up opportunities for applications in ultrathin plasmonic, optoelectronic and quantum devices.

Suggested Citation

  • Chenxinyu Pan & Yuanbiao Tong & Haoliang Qian & Alexey V. Krasavin & Jialin Li & Jiajie Zhu & Yiyun Zhang & Bowen Cui & Zhiyong Li & Chenming Wu & Lufang Liu & Linjun Li & Xin Guo & Anatoly V. Zayats , 2024. "Large area single crystal gold of single nanometer thickness for nanophotonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47133-7
    DOI: 10.1038/s41467-024-47133-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47133-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47133-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Can O. Karaman & Anton Yu. Bykov & Fatemeh Kiani & Giulia Tagliabue & Anatoly V. Zayats, 2024. "Ultrafast hot-carrier dynamics in ultrathin monocrystalline gold," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Yuan Liu & Jian Guo & Enbo Zhu & Lei Liao & Sung-Joon Lee & Mengning Ding & Imran Shakir & Vincent Gambin & Yu Huang & Xiangfeng Duan, 2018. "Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions," Nature, Nature, vol. 557(7707), pages 696-700, May.
    3. Liang Wang & Yihan Zhu & Jian-Qiang Wang & Fudong Liu & Jianfeng Huang & Xiangju Meng & Jean-Marie Basset & Yu Han & Feng-Shou Xiao, 2015. "Two-dimensional gold nanostructures with high activity for selective oxidation of carbon–hydrogen bonds," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    4. Xiao Huang & Shaozhou Li & Yizhong Huang & Shixin Wu & Xiaozhu Zhou & Shuzhou Li & Chee Lip Gan & Freddy Boey & Chad A. Mirkin & Hua Zhang, 2011. "Synthesis of hexagonal close-packed gold nanostructures," Nature Communications, Nature, vol. 2(1), pages 1-6, September.
    5. Niklas Luhmann & Dennis Høj & Markus Piller & Hendrik Kähler & Miao-Hsuan Chien & Robert G. West & Ulrik Lund Andersen & Silvan Schmid, 2020. "Ultrathin 2 nm gold as impedance-matched absorber for infrared light," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    6. A. Manjavacas & F.J. García de Abajo, 2014. "Tunable plasmons in atomically thin gold nanodisks," Nature Communications, Nature, vol. 5(1), pages 1-7, May.
    7. Bei Zhao & Zhong Wan & Yuan Liu & Junqing Xu & Xiangdong Yang & Dingyi Shen & Zucheng Zhang & Chunhao Guo & Qi Qian & Jia Li & Ruixia Wu & Zhaoyang Lin & Xingxu Yan & Bailing Li & Zhengwei Zhang & Hui, 2021. "High-order superlattices by rolling up van der Waals heterostructures," Nature, Nature, vol. 591(7850), pages 385-390, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junzhi Ye & Navendu Mondal & Ben P. Carwithen & Yunwei Zhang & Linjie Dai & Xiang-Bing Fan & Jian Mao & Zhiqiang Cui & Pratyush Ghosh & Clara Otero‐Martínez & Lars Turnhout & Yi-Teng Huang & Zhongzhen, 2024. "Extending the defect tolerance of halide perovskite nanocrystals to hot carrier cooling dynamics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Lu Li & Qinqin Wang & Fanfan Wu & Qiaoling Xu & Jinpeng Tian & Zhiheng Huang & Qinghe Wang & Xuan Zhao & Qinghua Zhang & Qinkai Fan & Xiuzhen Li & Yalin Peng & Yangkun Zhang & Kunshan Ji & Aomiao Zhi , 2024. "Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Zheyi Lu & Yang Chen & Weiqi Dang & Lingan Kong & Quanyang Tao & Likuan Ma & Donglin Lu & Liting Liu & Wanying Li & Zhiwei Li & Xiao Liu & Yiliu Wang & Xidong Duan & Lei Liao & Yuan Liu, 2023. "Wafer-scale high-κ dielectrics for two-dimensional circuits via van der Waals integration," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Xiaokun Yang & Rui He & Zheyi Lu & Yang Chen & Liting Liu & Donglin Lu & Likuan Ma & Quanyang Tao & Lingan Kong & Zhaojing Xiao & Songlong Liu & Zhiwei Li & Shuimei Ding & Xiao Liu & Yunxin Li & Yiliu, 2024. "Large-scale sub-5-nm vertical transistors by van der Waals integration," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Zhongzhe Wei & Zijiang Zhao & Chenglong Qiu & Songtao Huang & Zihao Yao & Mingxuan Wang & Yi Chen & Yue Lin & Xing Zhong & Xiaonian Li & Jianguo Wang, 2023. "Tripodal Pd metallenes mediated by Nb2C MXenes for boosting alkynes semihydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Liting Liu & Yang Chen & Long Chen & Biao Xie & Guoli Li & Lingan Kong & Quanyang Tao & Zhiwei Li & Xiaokun Yang & Zheyi Lu & Likuan Ma & Donglin Lu & Xiangdong Yang & Yuan Liu, 2024. "Ultrashort vertical-channel MoS2 transistor using a self-aligned contact," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    7. Xinyu Chen & Yufeng Xie & Yaochen Sheng & Hongwei Tang & Zeming Wang & Yu Wang & Yin Wang & Fuyou Liao & Jingyi Ma & Xiaojiao Guo & Ling Tong & Hanqi Liu & Hao Liu & Tianxiang Wu & Jiaxin Cao & Sitong, 2021. "Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    8. Koosha Nassiri Nazif & Alwin Daus & Jiho Hong & Nayeun Lee & Sam Vaziri & Aravindh Kumar & Frederick Nitta & Michelle E. Chen & Siavash Kananian & Raisul Islam & Kwan-Ho Kim & Jin-Hong Park & Ada S. Y, 2021. "High-specific-power flexible transition metal dichalcogenide solar cells," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    9. Maosong Xie & Yueyang Jia & Chen Nie & Zuheng Liu & Alvin Tang & Shiquan Fan & Xiaoyao Liang & Li Jiang & Zhezhi He & Rui Yang, 2023. "Monolithic 3D integration of 2D transistors and vertical RRAMs in 1T–4R structure for high-density memory," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Fan Liao & Kui Yin & Yujin Ji & Wenxiang Zhu & Zhenglong Fan & Youyong Li & Jun Zhong & Mingwang Shao & Zhenhui Kang & Qi Shao, 2023. "Iridium oxide nanoribbons with metastable monoclinic phase for highly efficient electrocatalytic oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Olabi, A.G. & Abdelkareem, Mohammad Ali & Wilberforce, Tabbi & Sayed, Enas Taha, 2021. "Application of graphene in energy storage device – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Seunguk Song & Aram Yoon & Jong-Kwon Ha & Jihoon Yang & Sora Jang & Chloe Leblanc & Jaewon Wang & Yeoseon Sim & Deep Jariwala & Seung Kyu Min & Zonghoon Lee & Soon-Yong Kwon, 2022. "Atomic transistors based on seamless lateral metal-semiconductor junctions with a sub-1-nm transfer length," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Xuanzhang Li & Yang Wei & Zhijie Wang & Ya Kong & Yipeng Su & Gaotian Lu & Zhen Mei & Yi Su & Guangqi Zhang & Jianhua Xiao & Liang Liang & Jia Li & Qunqing Li & Jin Zhang & Shoushan Fan & Yuegang Zhan, 2023. "One-dimensional semimetal contacts to two-dimensional semiconductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. Kai Liu & Hao Yang & Yilan Jiang & Zhaojun Liu & Shumeng Zhang & Zhixue Zhang & Zhun Qiao & Yiming Lu & Tao Cheng & Osamu Terasaki & Qing Zhang & Chuanbo Gao, 2023. "Coherent hexagonal platinum skin on nickel nanocrystals for enhanced hydrogen evolution activity," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Yaoqiang Zhou & Lei Tong & Zefeng Chen & Li Tao & Yue Pang & Jian-Bin Xu, 2023. "Contact-engineered reconfigurable two-dimensional Schottky junction field-effect transistor with low leakage currents," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Gyuho Myeong & Wongil Shin & Kyunghwan Sung & Seungho Kim & Hongsik Lim & Boram Kim & Taehyeok Jin & Jihoon Park & Taehun Lee & Michael S. Fuhrer & Kenji Watanabe & Takashi Taniguchi & Fei Liu & Sungj, 2022. "Dirac-source diode with sub-unity ideality factor," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    17. Xiaodong Zhang & Chenxi Huang & Zeyu Li & Jun Fu & Jiaran Tian & Zhuping Ouyang & Yuliang Yang & Xiang Shao & Yulei Han & Zhenhua Qiao & Hualing Zeng, 2024. "Reliable wafer-scale integration of two-dimensional materials and metal electrodes with van der Waals contacts," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Songhua Cai & Yingzhuo Lun & Dianxiang Ji & Peng Lv & Lu Han & Changqing Guo & Yipeng Zang & Si Gao & Yifan Wei & Min Gu & Chunchen Zhang & Zhengbin Gu & Xueyun Wang & Christopher Addiego & Daining Fa, 2022. "Enhanced polarization and abnormal flexural deformation in bent freestanding perovskite oxides," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Yanghang Pan & Xinzhu Wang & Weiyang Zhang & Lingyu Tang & Zhangyan Mu & Cheng Liu & Bailin Tian & Muchun Fei & Yamei Sun & Huanhuan Su & Libo Gao & Peng Wang & Xiangfeng Duan & Jing Ma & Mengning Din, 2022. "Boosting the performance of single-atom catalysts via external electric field polarization," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Changjian Lv & Fanchao Meng & Linghao Cui & Yadong Jiao & Zhixu Jia & Weiping Qin & Guanshi Qin, 2024. "Voltage-controlled nonlinear optical properties in gold nanofilms via electrothermal effect," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47133-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.