IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49206-z.html
   My bibliography  Save this article

Development and organization of the retinal orientation selectivity map

Author

Listed:
  • Dominic J. Vita

    (Vanderbilt University)

  • Fernanda S. Orsi

    (Vanderbilt University)

  • Nathan G. Stanko

    (Vanderbilt University)

  • Natalie A. Clark

    (Vanderbilt University)

  • Alexandre Tiriac

    (Vanderbilt University
    Vanderbilt University
    Vanderbilt University)

Abstract

Orientation or axial selectivity, the property of neurons in the visual system to respond preferentially to certain angles of visual stimuli, plays a pivotal role in our understanding of visual perception and information processing. This computation is performed as early as the retina, and although much work has established the cellular mechanisms of retinal orientation selectivity, how this computation is organized across the retina is unknown. Using a large dataset collected across the mouse retina, we demonstrate functional organization rules of retinal orientation selectivity. First, we identify three major functional classes of retinal cells that are orientation selective and match previous descriptions. Second, we show that one orientation is predominantly represented in the retina and that this predominant orientation changes as a function of retinal location. Third, we demonstrate that neural activity plays little role on the organization of retinal orientation selectivity. Lastly, we use in silico modeling followed by validation experiments to demonstrate that the overrepresented orientation aligns along concentric axes. These results demonstrate that, similar to direction selectivity, orientation selectivity is organized in a functional map as early as the retina.

Suggested Citation

  • Dominic J. Vita & Fernanda S. Orsi & Nathan G. Stanko & Natalie A. Clark & Alexandre Tiriac, 2024. "Development and organization of the retinal orientation selectivity map," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49206-z
    DOI: 10.1038/s41467-024-49206-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49206-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49206-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shai Sabbah & John A. Gemmer & Ananya Bhatia-Lin & Gabrielle Manoff & Gabriel Castro & Jesse K. Siegel & Nathan Jeffery & David M. Berson, 2017. "A retinal code for motion along the gravitational and body axes," Nature, Nature, vol. 546(7659), pages 492-497, June.
    2. Ho Ko & Lee Cossell & Chiara Baragli & Jan Antolik & Claudia Clopath & Sonja B. Hofer & Thomas D. Mrsic-Flogel, 2013. "The emergence of functional microcircuits in visual cortex," Nature, Nature, vol. 496(7443), pages 96-100, April.
    3. Kenichi Ohki & Sooyoung Chung & Yeang H. Ch'ng & Prakash Kara & R. Clay Reid, 2005. "Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex," Nature, Nature, vol. 433(7026), pages 597-603, February.
    4. Tom Baden & Philipp Berens & Katrin Franke & Miroslav Román Rosón & Matthias Bethge & Thomas Euler, 2016. "The functional diversity of retinal ganglion cells in the mouse," Nature, Nature, vol. 529(7586), pages 345-350, January.
    5. Dmitry Molotkov & Leiron Ferrarese & Tom Boissonnet & Hiroki Asari, 2023. "Topographic axonal projection at single-cell precision supports local retinotopy in the mouse superior colliculus," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yeon Jin Kim & Beth B. Peterson & Joanna D. Crook & Hannah R. Joo & Jiajia Wu & Christian Puller & Farrel R. Robinson & Paul D. Gamlin & King-Wai Yau & Felix Viana & John B. Troy & Robert G. Smith & O, 2022. "Origins of direction selectivity in the primate retina," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    2. Yajie Liang & Rongwen Lu & Katharine Borges & Na Ji, 2023. "Stimulus edges induce orientation tuning in superior colliculus," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Héctor Acarón Ledesma & Jennifer Ding & Swen Oosterboer & Xiaolin Huang & Qiang Chen & Sui Wang & Michael Z. Lin & Wei Wei, 2024. "Dendritic mGluR2 and perisomatic Kv3 signaling regulate dendritic computation of mouse starburst amacrine cells," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Jen-Chun Hsiang & Ning Shen & Florentina Soto & Daniel Kerschensteiner, 2024. "Distributed feature representations of natural stimuli across parallel retinal pathways," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    5. Brian B. Jeon & Thomas Fuchs & Steven M. Chase & Sandra J. Kuhlman, 2022. "Existing function in primary visual cortex is not perturbed by new skill acquisition of a non-matched sensory task," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Yoav Printz & Pritish Patil & Mathias Mahn & Asaf Benjamin & Anna Litvin & Rivka Levy & Max Bringmann & Ofer Yizhar, 2023. "Determinants of functional synaptic connectivity among amygdala-projecting prefrontal cortical neurons in male mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Lei Wang & Xin Liu & Yin Zhang, 2023. "A communication-efficient and privacy-aware distributed algorithm for sparse PCA," Computational Optimization and Applications, Springer, vol. 85(3), pages 1033-1072, July.
    8. Javier G. Orlandi & Mohammad Abdolrahmani & Ryo Aoki & Dmitry R. Lyamzin & Andrea Benucci, 2023. "Distributed context-dependent choice information in mouse posterior cortex," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Luke E Rogerson & Zhijian Zhao & Katrin Franke & Thomas Euler & Philipp Berens, 2019. "Bayesian hypothesis testing and experimental design for two-photon imaging data," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-27, August.
    10. Jason S Prentice & Olivier Marre & Mark L Ioffe & Adrianna R Loback & Gašper Tkačik & Michael J Berry II, 2016. "Error-Robust Modes of the Retinal Population Code," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-32, November.
    11. Mikael Lundqvist & Scott L. Brincat & Jonas Rose & Melissa R. Warden & Timothy J. Buschman & Earl K. Miller & Pawel Herman, 2023. "Working memory control dynamics follow principles of spatial computing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Cecilia L Friedrichs-Maeder & Alessandra Griffa & Juliane Schneider & Petra Susan Hüppi & Anita Truttmann & Patric Hagmann, 2017. "Exploring the role of white matter connectivity in cortex maturation," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-18, May.
    13. Elaine Tring & Konnie K. Duan & Dario L. Ringach, 2022. "ON/OFF domains shape receptive field structure in mouse visual cortex," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Gabriel Koch Ocker & Ashok Litwin-Kumar & Brent Doiron, 2015. "Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-40, August.
    15. Jérémie Sibille & Carolin Gehr & Jonathan I. Benichov & Hymavathy Balasubramanian & Kai Lun Teh & Tatiana Lupashina & Daniela Vallentin & Jens Kremkow, 2022. "High-density electrode recordings reveal strong and specific connections between retinal ganglion cells and midbrain neurons," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    16. Andrew Jo & Sercan Deniz & Suraj Cherian & Jian Xu & Daiki Futagi & Steven H. DeVries & Yongling Zhu, 2023. "Modular interneuron circuits control motion sensitivity in the mouse retina," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    17. Suchin S Gururangan & Alexander J Sadovsky & Jason N MacLean, 2014. "Analysis of Graph Invariants in Functional Neocortical Circuitry Reveals Generalized Features Common to Three Areas of Sensory Cortex," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-12, July.
    18. Yulin Shi & Zoran Nenadic & Xiangmin Xu, 2010. "Novel Use of Matched Filtering for Synaptic Event Detection and Extraction," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-15, November.
    19. Haleigh N. Mulholland & Matthias Kaschube & Gordon B. Smith, 2024. "Self-organization of modular activity in immature cortical networks," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    20. Jacqueline Cornean & Sebastian Molina-Obando & Burak Gür & Annika Bast & Giordano Ramos-Traslosheros & Jonas Chojetzki & Lena Lörsch & Maria Ioannidou & Rachita Taneja & Christopher Schnaitmann & Mari, 2024. "Heterogeneity of synaptic connectivity in the fly visual system," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49206-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.