IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32775-2.html
   My bibliography  Save this article

High-density electrode recordings reveal strong and specific connections between retinal ganglion cells and midbrain neurons

Author

Listed:
  • Jérémie Sibille

    (Charité-Universitätsmedizin Berlin
    Bernstein Center for Computational Neuroscience Berlin
    Humboldt-Universität zu Berlin
    Einstein Center for Neurosciences Berlin)

  • Carolin Gehr

    (Charité-Universitätsmedizin Berlin
    Bernstein Center for Computational Neuroscience Berlin
    Humboldt-Universität zu Berlin
    Einstein Center for Neurosciences Berlin)

  • Jonathan I. Benichov

    (Max Planck Institute for Ornithology
    Max Planck Institute for Biological Intelligence (in foundation))

  • Hymavathy Balasubramanian

    (Charité-Universitätsmedizin Berlin
    Bernstein Center for Computational Neuroscience Berlin
    Humboldt-Universität zu Berlin
    Einstein Center for Neurosciences Berlin)

  • Kai Lun Teh

    (Charité-Universitätsmedizin Berlin
    Bernstein Center for Computational Neuroscience Berlin
    Humboldt-Universität zu Berlin
    Einstein Center for Neurosciences Berlin)

  • Tatiana Lupashina

    (Charité-Universitätsmedizin Berlin
    Bernstein Center for Computational Neuroscience Berlin
    Humboldt-Universität zu Berlin
    Einstein Center for Neurosciences Berlin)

  • Daniela Vallentin

    (Max Planck Institute for Ornithology
    Max Planck Institute for Biological Intelligence (in foundation))

  • Jens Kremkow

    (Charité-Universitätsmedizin Berlin
    Bernstein Center for Computational Neuroscience Berlin
    Humboldt-Universität zu Berlin
    Einstein Center for Neurosciences Berlin)

Abstract

The superior colliculus is a midbrain structure that plays important roles in visually guided behaviors in mammals. Neurons in the superior colliculus receive inputs from retinal ganglion cells but how these inputs are integrated in vivo is unknown. Here, we discovered that high-density electrodes simultaneously capture the activity of retinal axons and their postsynaptic target neurons in the superior colliculus, in vivo. We show that retinal ganglion cell axons in the mouse provide a single cell precise representation of the retina as input to superior colliculus. This isomorphic mapping builds the scaffold for precise retinotopic wiring and functionally specific connection strength. Our methods are broadly applicable, which we demonstrate by recording retinal inputs in the optic tectum in zebra finches. We find common wiring rules in mice and zebra finches that provide a precise representation of the visual world encoded in retinal ganglion cells connections to neurons in retinorecipient areas.

Suggested Citation

  • Jérémie Sibille & Carolin Gehr & Jonathan I. Benichov & Hymavathy Balasubramanian & Kai Lun Teh & Tatiana Lupashina & Daniela Vallentin & Jens Kremkow, 2022. "High-density electrode recordings reveal strong and specific connections between retinal ganglion cells and midbrain neurons," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32775-2
    DOI: 10.1038/s41467-022-32775-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32775-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32775-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lee Cossell & Maria Florencia Iacaruso & Dylan R. Muir & Rachael Houlton & Elie N. Sader & Ho Ko & Sonja B. Hofer & Thomas D. Mrsic-Flogel, 2015. "Functional organization of excitatory synaptic strength in primary visual cortex," Nature, Nature, vol. 518(7539), pages 399-403, February.
    2. Carsen Stringer & Marius Pachitariu & Nicholas Steinmetz & Matteo Carandini & Kenneth D. Harris, 2019. "High-dimensional geometry of population responses in visual cortex," Nature, Nature, vol. 571(7765), pages 361-365, July.
    3. Nora L. Benavidez & Michael S. Bienkowski & Muye Zhu & Luis H. Garcia & Marina Fayzullina & Lei Gao & Ian Bowman & Lin Gou & Neda Khanjani & Kaelan R. Cotter & Laura Korobkova & Marlene Becerra & Chun, 2021. "Organization of the inputs and outputs of the mouse superior colliculus," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    4. W. Martin Usrey & John B. Reppas & R. Clay Reid, 1998. "Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus," Nature, Nature, vol. 395(6700), pages 384-387, September.
    5. Jens Kremkow & Jianzhong Jin & Yushi Wang & Jose M. Alonso, 2016. "Principles underlying sensory map topography in primary visual cortex," Nature, Nature, vol. 533(7601), pages 52-57, May.
    6. Joshua H. Siegle & Xiaoxuan Jia & Séverine Durand & Sam Gale & Corbett Bennett & Nile Graddis & Greggory Heller & Tamina K. Ramirez & Hannah Choi & Jennifer A. Luviano & Peter A. Groblewski & Ruweida , 2021. "Survey of spiking in the mouse visual system reveals functional hierarchy," Nature, Nature, vol. 592(7852), pages 86-92, April.
    7. Mehran Ahmadlou & J Alexander Heimel, 2015. "Preference for concentric orientations in the mouse superior colliculus," Nature Communications, Nature, vol. 6(1), pages 1-11, November.
    8. Nicholas A. Steinmetz & Peter Zatka-Haas & Matteo Carandini & Kenneth D. Harris, 2019. "Distributed coding of choice, action and engagement across the mouse brain," Nature, Nature, vol. 576(7786), pages 266-273, December.
    9. Soumya Chatterjee & Edward M. Callaway, 2003. "Parallel colour-opponent pathways to primary visual cortex," Nature, Nature, vol. 426(6967), pages 668-671, December.
    10. David C Sterratt & Daniel Lyngholm & David J Willshaw & Ian D Thompson, 2013. "Standard Anatomical and Visual Space for the Mouse Retina: Computational Reconstruction and Transformation of Flattened Retinae with the Retistruct Package," PLOS Computational Biology, Public Library of Science, vol. 9(2), pages 1-10, February.
    11. Klaudia P. Szatko & Maria M. Korympidou & Yanli Ran & Philipp Berens & Deniz Dalkara & Timm Schubert & Thomas Euler & Katrin Franke, 2020. "Neural circuits in the mouse retina support color vision in the upper visual field," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    12. James J. Jun & Nicholas A. Steinmetz & Joshua H. Siegle & Daniel J. Denman & Marius Bauza & Brian Barbarits & Albert K. Lee & Costas A. Anastassiou & Alexandru Andrei & Çağatay Aydın & Mladen Barbic &, 2017. "Fully integrated silicon probes for high-density recording of neural activity," Nature, Nature, vol. 551(7679), pages 232-236, November.
    13. Suva Roy & Na Young Jun & Emily L. Davis & John Pearson & Greg D. Field, 2021. "Inter-mosaic coordination of retinal receptive fields," Nature, Nature, vol. 592(7854), pages 409-413, April.
    14. Tom Baden & Philipp Berens & Katrin Franke & Miroslav Román Rosón & Matthias Bethge & Thomas Euler, 2016. "The functional diversity of retinal ganglion cells in the mouse," Nature, Nature, vol. 529(7586), pages 345-350, January.
    15. Anthony D. Lien & Massimo Scanziani, 2018. "Cortical direction selectivity emerges at convergence of thalamic synapses," Nature, Nature, vol. 558(7708), pages 80-86, June.
    16. Jean-Sébastien Jouhanneau & Jens Kremkow & James F. A. Poulet, 2018. "Single synaptic inputs drive high-precision action potentials in parvalbumin expressing GABA-ergic cortical neurons in vivo," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    17. Evan H. Feinberg & Markus Meister, 2015. "Orientation columns in the mouse superior colliculus," Nature, Nature, vol. 519(7542), pages 229-232, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marvin Seifert & Paul A. Roberts & George Kafetzis & Daniel Osorio & Tom Baden, 2023. "Birds multiplex spectral and temporal visual information via retinal On- and Off-channels," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yajie Liang & Rongwen Lu & Katharine Borges & Na Ji, 2023. "Stimulus edges induce orientation tuning in superior colliculus," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Edward A. B. Horrocks & Fabio R. Rodrigues & Aman B. Saleem, 2024. "Flexible neural population dynamics govern the speed and stability of sensory encoding in mouse visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    3. Yina Wei & Anirban Nandi & Xiaoxuan Jia & Joshua H. Siegle & Daniel Denman & Soo Yeun Lee & Anatoly Buchin & Werner Geit & Clayton P. Mosher & Shawn Olsen & Costas A. Anastassiou, 2023. "Associations between in vitro, in vivo and in silico cell classes in mouse primary visual cortex," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    4. Marvin Seifert & Paul A. Roberts & George Kafetzis & Daniel Osorio & Tom Baden, 2023. "Birds multiplex spectral and temporal visual information via retinal On- and Off-channels," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Yoav Printz & Pritish Patil & Mathias Mahn & Asaf Benjamin & Anna Litvin & Rivka Levy & Max Bringmann & Ofer Yizhar, 2023. "Determinants of functional synaptic connectivity among amygdala-projecting prefrontal cortical neurons in male mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Kenneth W. Latimer & David J. Freedman, 2023. "Low-dimensional encoding of decisions in parietal cortex reflects long-term training history," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    7. Tian Wang & Weifeng Dai & Yujie Wu & Yang Li & Yi Yang & Yange Zhang & Tingting Zhou & Xiaowen Sun & Gang Wang & Liang Li & Fei Dou & Dajun Xing, 2024. "Nonuniform and pathway-specific laminar processing of spatial frequencies in the primary visual cortex of primates," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Sohrab Najafian & Erin Koch & Kai Lun Teh & Jianzhong Jin & Hamed Rahimi-Nasrabadi & Qasim Zaidi & Jens Kremkow & Jose-Manuel Alonso, 2022. "A theory of cortical map formation in the visual brain," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    9. Gabriel Koch Ocker & Krešimir Josić & Eric Shea-Brown & Michael A Buice, 2017. "Linking structure and activity in nonlinear spiking networks," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-47, June.
    10. Lloyd E. Russell & Mehmet Fişek & Zidan Yang & Lynn Pei Tan & Adam M. Packer & Henry W. P. Dalgleish & Selmaan N. Chettih & Christopher D. Harvey & Michael Häusser, 2024. "The influence of cortical activity on perception depends on behavioral state and sensory context," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    11. Peichao Li & Anupam K. Garg & Li A. Zhang & Mohammad S. Rashid & Edward M. Callaway, 2022. "Cone opponent functional domains in primary visual cortex combine signals for color appearance mechanisms," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    12. Bartul Mimica & Tuçe Tombaz & Claudia Battistin & Jingyi Guo Fuglstad & Benjamin A. Dunn & Jonathan R. Whitlock, 2023. "Behavioral decomposition reveals rich encoding structure employed across neocortex in rats," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    13. Dmitry Molotkov & Leiron Ferrarese & Tom Boissonnet & Hiroki Asari, 2023. "Topographic axonal projection at single-cell precision supports local retinotopy in the mouse superior colliculus," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Kotaro Ishizu & Shosuke Nishimoto & Yutaro Ueoka & Akihiro Funamizu, 2024. "Localized and global representation of prior value, sensory evidence, and choice in male mouse cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Maximilian Hoffmann & Jörg Henninger & Johannes Veith & Lars Richter & Benjamin Judkewitz, 2023. "Blazed oblique plane microscopy reveals scale-invariant inference of brain-wide population activity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Disheng Tang & Joel Zylberberg & Xiaoxuan Jia & Hannah Choi, 2024. "Stimulus type shapes the topology of cellular functional networks in mouse visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    17. Alyse Thomas & Weiguo Yang & Catherine Wang & Sri Laasya Tipparaju & Guang Chen & Brennan Sullivan & Kylie Swiekatowski & Mahima Tatam & Charles Gerfen & Nuo Li, 2023. "Superior colliculus bidirectionally modulates choice activity in frontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    18. Rita Gil & Mafalda Valente & Noam Shemesh, 2024. "Rat superior colliculus encodes the transition between static and dynamic vision modes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Bettina Voelcker & Ravi Pancholi & Simon Peron, 2022. "Transformation of primary sensory cortical representations from layer 4 to layer 2," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Spencer Ward & Conor Riley & Erin M. Carey & Jenny Nguyen & Sadik Esener & Axel Nimmerjahn & Donald J. Sirbuly, 2022. "Electro-optical mechanically flexible coaxial microprobes for minimally invasive interfacing with intrinsic neural circuits," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32775-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.