IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002466.html
   My bibliography  Save this article

Coordinated Optimization of Visual Cortical Maps (I) Symmetry-based Analysis

Author

Listed:
  • Lars Reichl
  • Dominik Heide
  • Siegrid Löwel
  • Justin C Crowley
  • Matthias Kaschube
  • Fred Wolf

Abstract

In the primary visual cortex of primates and carnivores, functional architecture can be characterized by maps of various stimulus features such as orientation preference (OP), ocular dominance (OD), and spatial frequency. It is a long-standing question in theoretical neuroscience whether the observed maps should be interpreted as optima of a specific energy functional that summarizes the design principles of cortical functional architecture. A rigorous evaluation of this optimization hypothesis is particularly demanded by recent evidence that the functional architecture of orientation columns precisely follows species invariant quantitative laws. Because it would be desirable to infer the form of such an optimization principle from the biological data, the optimization approach to explain cortical functional architecture raises the following questions: i) What are the genuine ground states of candidate energy functionals and how can they be calculated with precision and rigor? ii) How do differences in candidate optimization principles impact on the predicted map structure and conversely what can be learned about a hypothetical underlying optimization principle from observations on map structure? iii) Is there a way to analyze the coordinated organization of cortical maps predicted by optimization principles in general? To answer these questions we developed a general dynamical systems approach to the combined optimization of visual cortical maps of OP and another scalar feature such as OD or spatial frequency preference. From basic symmetry assumptions we obtain a comprehensive phenomenological classification of possible inter-map coupling energies and examine representative examples. We show that each individual coupling energy leads to a different class of OP solutions with different correlations among the maps such that inferences about the optimization principle from map layout appear viable. We systematically assess whether quantitative laws resembling experimental observations can result from the coordinated optimization of orientation columns with other feature maps. Author Summary: Neurons in the visual cortex form spatial representations or maps of several stimulus features. How are different spatial representations of visual information coordinated in the brain? In this paper, we study the hypothesis that the coordinated organization of several visual cortical maps can be explained by joint optimization. Previous attempts to explain the spatial layout of functional maps in the visual cortex proposed specific optimization principles ad hoc. Here, we systematically analyze how optimization principles in a general class of models impact on the spatial layout of visual cortical maps. For each considered optimization principle we identify the corresponding optima and analyze their spatial layout. This directly demonstrates that by studying map layout and geometric inter-map correlations one can substantially constrain the underlying optimization principle. In particular, we study whether such optimization principles can lead to spatially complex patterns and to geometric correlations among cortical maps as observed in imaging experiments.

Suggested Citation

  • Lars Reichl & Dominik Heide & Siegrid Löwel & Justin C Crowley & Matthias Kaschube & Fred Wolf, 2012. "Coordinated Optimization of Visual Cortical Maps (I) Symmetry-based Analysis," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-24, November.
  • Handle: RePEc:plo:pcbi00:1002466
    DOI: 10.1371/journal.pcbi.1002466
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002466
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002466&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002466?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lars Reichl & Dominik Heide & Siegrid Löwel & Justin C Crowley & Matthias Kaschube & Fred Wolf, 2012. "Coordinated Optimization of Visual Cortical Maps (II) Numerical Studies," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-26, November.
    2. Kenichi Ohki & Sooyoung Chung & Yeang H. Ch'ng & Prakash Kara & R. Clay Reid, 2005. "Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex," Nature, Nature, vol. 433(7026), pages 597-603, February.
    3. F. Wolf & T. Geisel, 1998. "Spontaneous pinwheel annihilation during visual development," Nature, Nature, vol. 395(6697), pages 73-78, September.
    4. Aniruddha Das & Charles D. Gilbert, 1997. "Distortions of visuotopic map match orientation singularities in primary visual cortex," Nature, Nature, vol. 387(6633), pages 594-598, June.
    5. Leonard E. White & David M. Coppola & David Fitzpatrick, 2001. "The contribution of sensory experience to the maturation of orientation selectivity in ferret visual cortex," Nature, Nature, vol. 411(6841), pages 1049-1052, June.
    6. Kenichi Ohki & Sooyoung Chung & Prakash Kara & Mark Hübener & Tobias Bonhoeffer & R. Clay Reid, 2006. "Highly ordered arrangement of single neurons in orientation pinwheels," Nature, Nature, vol. 442(7105), pages 925-928, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lars Reichl & Dominik Heide & Siegrid Löwel & Justin C Crowley & Matthias Kaschube & Fred Wolf, 2012. "Coordinated Optimization of Visual Cortical Maps (II) Numerical Studies," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-26, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lars Reichl & Dominik Heide & Siegrid Löwel & Justin C Crowley & Matthias Kaschube & Fred Wolf, 2012. "Coordinated Optimization of Visual Cortical Maps (II) Numerical Studies," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-26, November.
    2. Zvi N. Roth & Kendrick Kay & Elisha P. Merriam, 2022. "Natural scene sampling reveals reliable coarse-scale orientation tuning in human V1," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Manuel Schottdorf & Stephen J Eglen & Fred Wolf & Wolfgang Keil, 2014. "Can Retinal Ganglion Cell Dipoles Seed Iso-Orientation Domains in the Visual Cortex?," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-18, January.
    4. Javier G. Orlandi & Mohammad Abdolrahmani & Ryo Aoki & Dmitry R. Lyamzin & Andrea Benucci, 2023. "Distributed context-dependent choice information in mouse posterior cortex," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Elaine Tring & Konnie K. Duan & Dario L. Ringach, 2022. "ON/OFF domains shape receptive field structure in mouse visual cortex," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Haleigh N. Mulholland & Matthias Kaschube & Gordon B. Smith, 2024. "Self-organization of modular activity in immature cortical networks," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Dominic J. Vita & Fernanda S. Orsi & Nathan G. Stanko & Natalie A. Clark & Alexandre Tiriac, 2024. "Development and organization of the retinal orientation selectivity map," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Sohrab Najafian & Erin Koch & Kai Lun Teh & Jianzhong Jin & Hamed Rahimi-Nasrabadi & Qasim Zaidi & Jens Kremkow & Jose-Manuel Alonso, 2022. "A theory of cortical map formation in the visual brain," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    9. Jonathan J Hunt & Peter Dayan & Geoffrey J Goodhill, 2013. "Sparse Coding Can Predict Primary Visual Cortex Receptive Field Changes Induced by Abnormal Visual Input," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-17, May.
    10. Yulin Shi & Zoran Nenadic & Xiangmin Xu, 2010. "Novel Use of Matched Filtering for Synaptic Event Detection and Extraction," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-15, November.
    11. Yajie Liang & Rongwen Lu & Katharine Borges & Na Ji, 2023. "Stimulus edges induce orientation tuning in superior colliculus," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. James Trousdale & Yu Hu & Eric Shea-Brown & Krešimir Josić, 2012. "Impact of Network Structure and Cellular Response on Spike Time Correlations," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-15, March.
    13. Sichen Tao & Yuki Todo & Zheng Tang & Bin Li & Zhiming Zhang & Riku Inoue, 2022. "A Novel Artificial Visual System for Motion Direction Detection in Grayscale Images," Mathematics, MDPI, vol. 10(16), pages 1-32, August.
    14. Jimin Wu & Yuzhi Chen & Ashok Veeraraghavan & Eyal Seidemann & Jacob T. Robinson, 2024. "Mesoscopic calcium imaging in a head-unrestrained male non-human primate using a lensless microscope," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Meng Wang & Ke Liu & Junxia Pan & Jialin Li & Pei Sun & Yongsheng Zhang & Longhui Li & Wenyan Guo & Qianqian Xin & Zhikai Zhao & Yurong Liu & Zhenqiao Zhou & Jing Lyu & Ting Zheng & Yunyun Han & Chunq, 2022. "Brain-wide projection reconstruction of single functionally defined neurons," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Luca Sità & Marco Brondi & Pedro Lagomarsino de Leon Roig & Sebastiano Curreli & Mariangela Panniello & Dania Vecchia & Tommaso Fellin, 2022. "A deep-learning approach for online cell identification and trace extraction in functional two-photon calcium imaging," Nature Communications, Nature, vol. 13(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.