IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-44851-w.html
   My bibliography  Save this article

A presynaptic source drives differing levels of surround suppression in two mouse retinal ganglion cell types

Author

Listed:
  • David Swygart

    (Northwestern University Interdepartmental Neuroscience Program)

  • Wan-Qing Yu

    (University of Washington)

  • Shunsuke Takeuchi

    (The University of Tokyo)

  • Rachel O. L. Wong

    (University of Washington)

  • Gregory W. Schwartz

    (Northwestern University Interdepartmental Neuroscience Program
    Northwestern University
    Northwestern University)

Abstract

In early sensory systems, cell-type diversity generally increases from the periphery into the brain, resulting in a greater heterogeneity of responses to the same stimuli. Surround suppression is a canonical visual computation that begins within the retina and is found at varying levels across retinal ganglion cell types. Our results show that heterogeneity in the level of surround suppression occurs subcellularly at bipolar cell synapses. Using single-cell electrophysiology and serial block-face scanning electron microscopy, we show that two retinal ganglion cell types exhibit very different levels of surround suppression even though they receive input from the same bipolar cell types. This divergence of the bipolar cell signal occurs through synapse-specific regulation by amacrine cells at the scale of tens of microns. These findings indicate that each synapse of a single bipolar cell can carry a unique visual signal, expanding the number of possible functional channels at the earliest stages of visual processing.

Suggested Citation

  • David Swygart & Wan-Qing Yu & Shunsuke Takeuchi & Rachel O. L. Wong & Gregory W. Schwartz, 2024. "A presynaptic source drives differing levels of surround suppression in two mouse retinal ganglion cell types," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44851-w
    DOI: 10.1038/s41467-024-44851-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-44851-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-44851-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bence P. Ölveczky & Stephen A. Baccus & Markus Meister, 2003. "Segregation of object and background motion in the retina," Nature, Nature, vol. 423(6938), pages 401-408, May.
    2. Dominique Debanne & Nathalie C. Guérineau & Beat H. Gähwiler & Scott M. Thompson, 1997. "Action-potential propagation gated by an axonal IA-like K+ conductance in hippocampus," Nature, Nature, vol. 389(6648), pages 286-289, September.
    3. Dominique Debanne & Nathalie C. Guérineau & Beat H. Ghwiler & Scott M. Thompson, 1997. "Erratum: Action-potential propagation gated by an axonal IA-like K+conductance in hippocampus," Nature, Nature, vol. 390(6659), pages 536-536, December.
    4. Huayu Ding & Robert G. Smith & Alon Poleg-Polsky & Jeffrey S. Diamond & Kevin L. Briggman, 2016. "Species-specific wiring for direction selectivity in the mammalian retina," Nature, Nature, vol. 535(7610), pages 105-110, July.
    5. Luke E Rogerson & Zhijian Zhao & Katrin Franke & Thomas Euler & Philipp Berens, 2019. "Bayesian hypothesis testing and experimental design for two-photon imaging data," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-27, August.
    6. Katrin Franke & Philipp Berens & Timm Schubert & Matthias Bethge & Thomas Euler & Tom Baden, 2017. "Inhibition decorrelates visual feature representations in the inner retina," Nature, Nature, vol. 542(7642), pages 439-444, February.
    7. Tom Baden & Philipp Berens & Katrin Franke & Miroslav Román Rosón & Matthias Bethge & Thomas Euler, 2016. "The functional diversity of retinal ganglion cells in the mouse," Nature, Nature, vol. 529(7586), pages 345-350, January.
    8. Sarah Strauss & Maria M. Korympidou & Yanli Ran & Katrin Franke & Timm Schubert & Tom Baden & Philipp Berens & Thomas Euler & Anna L. Vlasits, 2022. "Center-surround interactions underlie bipolar cell motion sensitivity in the mouse retina," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    9. Moritz Helmstaedter & Kevin L. Briggman & Srinivas C. Turaga & Viren Jain & H. Sebastian Seung & Winfried Denk, 2013. "Connectomic reconstruction of the inner plexiform layer in the mouse retina," Nature, Nature, vol. 500(7461), pages 168-174, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jen-Chun Hsiang & Ning Shen & Florentina Soto & Daniel Kerschensteiner, 2024. "Distributed feature representations of natural stimuli across parallel retinal pathways," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Héctor Acarón Ledesma & Jennifer Ding & Swen Oosterboer & Xiaolin Huang & Qiang Chen & Sui Wang & Michael Z. Lin & Wei Wei, 2024. "Dendritic mGluR2 and perisomatic Kv3 signaling regulate dendritic computation of mouse starburst amacrine cells," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. John A. Gaynes & Samuel A. Budoff & Michael J. Grybko & Joshua B. Hunt & Alon Poleg-Polsky, 2022. "Classical center-surround receptive fields facilitate novel object detection in retinal bipolar cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Jen-Chun Hsiang & Ning Shen & Florentina Soto & Daniel Kerschensteiner, 2024. "Distributed feature representations of natural stimuli across parallel retinal pathways," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    4. Andrew Jo & Sercan Deniz & Suraj Cherian & Jian Xu & Daiki Futagi & Steven H. DeVries & Yongling Zhu, 2023. "Modular interneuron circuits control motion sensitivity in the mouse retina," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Jason S Prentice & Olivier Marre & Mark L Ioffe & Adrianna R Loback & Gašper Tkačik & Michael J Berry II, 2016. "Error-Robust Modes of the Retinal Population Code," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-32, November.
    6. Andrew Jo & Sercan Deniz & Jian Xu & Robert M. Duvoisin & Steven H. DeVries & Yongling Zhu, 2023. "A sign-inverted receptive field of inhibitory interneurons provides a pathway for ON-OFF interactions in the retina," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Yeon Jin Kim & Beth B. Peterson & Joanna D. Crook & Hannah R. Joo & Jiajia Wu & Christian Puller & Farrel R. Robinson & Paul D. Gamlin & King-Wai Yau & Felix Viana & John B. Troy & Robert G. Smith & O, 2022. "Origins of direction selectivity in the primate retina," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    8. Luke E Rogerson & Zhijian Zhao & Katrin Franke & Thomas Euler & Philipp Berens, 2019. "Bayesian hypothesis testing and experimental design for two-photon imaging data," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-27, August.
    9. Niru Maheswaranathan & David B Kastner & Stephen A Baccus & Surya Ganguli, 2018. "Inferring hidden structure in multilayered neural circuits," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-30, August.
    10. Chad P. Grabner & Daiki Futagi & Jun Shi & Vytas Bindokas & Katsunori Kitano & Eric A. Schwartz & Steven H. DeVries, 2023. "Mechanisms of simultaneous linear and nonlinear computations at the mammalian cone photoreceptor synapse," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    11. Jacqueline Cornean & Sebastian Molina-Obando & Burak Gür & Annika Bast & Giordano Ramos-Traslosheros & Jonas Chojetzki & Lena Lörsch & Maria Ioannidou & Rachita Taneja & Christopher Schnaitmann & Mari, 2024. "Heterogeneity of synaptic connectivity in the fly visual system," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Zhuiri Peng & Lei Tong & Wenhao Shi & Langlang Xu & Xinyu Huang & Zheng Li & Xiangxiang Yu & Xiaohan Meng & Xiao He & Shengjie Lv & Gaochen Yang & Hao Hao & Tian Jiang & Xiangshui Miao & Lei Ye, 2024. "Multifunctional human visual pathway-replicated hardware based on 2D materials," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Adam Mani & Xinzhu Yang & Tiffany A. Zhao & Megan L. Leyrer & Daniel Schreck & David M. Berson, 2023. "A circuit suppressing retinal drive to the optokinetic system during fast image motion," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Antoine Allard & M Ángeles Serrano, 2020. "Navigable maps of structural brain networks across species," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-20, February.
    15. Jérémie Sibille & Carolin Gehr & Jonathan I. Benichov & Hymavathy Balasubramanian & Kai Lun Teh & Tatiana Lupashina & Daniela Vallentin & Jens Kremkow, 2022. "High-density electrode recordings reveal strong and specific connections between retinal ganglion cells and midbrain neurons," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    16. Zhe Li & Yi Wang & Kesheng Wang, 2020. "A data-driven method based on deep belief networks for backlash error prediction in machining centers," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1693-1705, October.
    17. Carles Bosch & Tobias Ackels & Alexandra Pacureanu & Yuxin Zhang & Christopher J. Peddie & Manuel Berning & Norman Rzepka & Marie-Christine Zdora & Isabell Whiteley & Malte Storm & Anne Bonnin & Chris, 2022. "Functional and multiscale 3D structural investigation of brain tissue through correlative in vivo physiology, synchrotron microtomography and volume electron microscopy," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    18. Alex D Herbert & Antony M Carr & Eva Hoffmann, 2014. "FindFoci: A Focus Detection Algorithm with Automated Parameter Training That Closely Matches Human Assignments, Reduces Human Inconsistencies and Increases Speed of Analysis," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-33, December.
    19. Matías A. Goldin & Baptiste Lefebvre & Samuele Virgili & Mathieu Kim Pham Van Cang & Alexander Ecker & Thierry Mora & Ulisse Ferrari & Olivier Marre, 2022. "Context-dependent selectivity to natural images in the retina," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Munir Husein & Il-Yop Chung, 2019. "Day-Ahead Solar Irradiance Forecasting for Microgrids Using a Long Short-Term Memory Recurrent Neural Network: A Deep Learning Approach," Energies, MDPI, vol. 12(10), pages 1-21, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44851-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.