IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005148.html
   My bibliography  Save this article

Error-Robust Modes of the Retinal Population Code

Author

Listed:
  • Jason S Prentice
  • Olivier Marre
  • Mark L Ioffe
  • Adrianna R Loback
  • Gašper Tkačik
  • Michael J Berry II

Abstract

Across the nervous system, certain population spiking patterns are observed far more frequently than others. A hypothesis about this structure is that these collective activity patterns function as population codewords–collective modes–carrying information distinct from that of any single cell. We investigate this phenomenon in recordings of ∼150 retinal ganglion cells, the retina’s output. We develop a novel statistical model that decomposes the population response into modes; it predicts the distribution of spiking activity in the ganglion cell population with high accuracy. We found that the modes represent localized features of the visual stimulus that are distinct from the features represented by single neurons. Modes form clusters of activity states that are readily discriminated from one another. When we repeated the same visual stimulus, we found that the same mode was robustly elicited. These results suggest that retinal ganglion cells’ collective signaling is endowed with a form of error-correcting code–a principle that may hold in brain areas beyond retina.Author Summary: Neurons in most parts of the nervous system represent and process information in a collective fashion, yet the nature of this collective code is poorly understood. An important constraint placed on any such collective processing comes from the fact that individual neurons’ signaling is prone to corruption by noise. The information theory and engineering literatures have studied error-correcting codes that allow individual noise-prone coding units to “check” each other, forming an overall representation that is robust to errors. In this paper, we have analyzed the population code of one of the best-studied neural systems, the retina, and found that it is structured in a manner analogous to error-correcting schemes. Indeed, we found that the complex activity patterns over ~150 retinal ganglion cells, the output neurons of the retina, could be mapped onto collective code words, and that these code words represented precise visual information while suppressing noise. In order to analyze this coding scheme, we introduced a novel quantitative model of the retinal output that predicted neural activity patterns more accurately than existing state-of-the-art approaches.

Suggested Citation

  • Jason S Prentice & Olivier Marre & Mark L Ioffe & Adrianna R Loback & Gašper Tkačik & Michael J Berry II, 2016. "Error-Robust Modes of the Retinal Population Code," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-32, November.
  • Handle: RePEc:plo:pcbi00:1005148
    DOI: 10.1371/journal.pcbi.1005148
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005148
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005148&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rava Azeredo da Silveira & Michael J Berry II, 2014. "High-Fidelity Coding with Correlated Neurons," PLOS Computational Biology, Public Library of Science, vol. 10(11), pages 1-25, November.
    2. Stelios M. Smirnakis & Michael J. Berry & David K. Warland & William Bialek & Markus Meister, 1997. "Adaptation of retinal processing to image contrast and spatial scale," Nature, Nature, vol. 386(6620), pages 69-73, March.
    3. Botond Roska & Frank Werblin, 2001. "Vertical interactions across ten parallel, stacked representations in the mammalian retina," Nature, Nature, vol. 410(6828), pages 583-587, March.
    4. Michael J. Berry & Iman H. Brivanlou & Thomas A. Jordan & Markus Meister, 1999. "Anticipation of moving stimuli by the retina," Nature, Nature, vol. 398(6725), pages 334-338, March.
    5. Bence P. Ölveczky & Stephen A. Baccus & Markus Meister, 2003. "Segregation of object and background motion in the retina," Nature, Nature, vol. 423(6938), pages 401-408, May.
    6. Gašper Tkačik & Olivier Marre & Dario Amodei & Elad Schneidman & William Bialek & Michael J Berry II, 2014. "Searching for Collective Behavior in a Large Network of Sensory Neurons," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-23, January.
    7. Jonathan W. Pillow & Jonathon Shlens & Liam Paninski & Alexander Sher & Alan M. Litke & E. J. Chichilnisky & Eero P. Simoncelli, 2008. "Spatio-temporal correlations and visual signalling in a complete neuronal population," Nature, Nature, vol. 454(7207), pages 995-999, August.
    8. Urs Köster & Jascha Sohl-Dickstein & Charles M Gray & Bruno A Olshausen, 2014. "Modeling Higher-Order Correlations within Cortical Microcolumns," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-12, July.
    9. Kevin L. Briggman & Moritz Helmstaedter & Winfried Denk, 2011. "Wiring specificity in the direction-selectivity circuit of the retina," Nature, Nature, vol. 471(7337), pages 183-188, March.
    10. Elad Schneidman & Michael J. Berry & Ronen Segev & William Bialek, 2006. "Weak pairwise correlations imply strongly correlated network states in a neural population," Nature, Nature, vol. 440(7087), pages 1007-1012, April.
    11. Einat Granot-Atedgi & Gašper Tkačik & Ronen Segev & Elad Schneidman, 2013. "Stimulus-dependent Maximum Entropy Models of Neural Population Codes," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-14, March.
    12. Mattia Rigotti & Omri Barak & Melissa R. Warden & Xiao-Jing Wang & Nathaniel D. Daw & Earl K. Miller & Stefano Fusi, 2013. "The importance of mixed selectivity in complex cognitive tasks," Nature, Nature, vol. 497(7451), pages 585-590, May.
    13. Shelley I. Fried & Thomas A. Münch & Frank S. Werblin, 2002. "Mechanisms and circuitry underlying directional selectivity in the retina," Nature, Nature, vol. 420(6914), pages 411-414, November.
    14. Tom Baden & Philipp Berens & Katrin Franke & Miroslav Román Rosón & Matthias Bethge & Thomas Euler, 2016. "The functional diversity of retinal ganglion cells in the mouse," Nature, Nature, vol. 529(7586), pages 345-350, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Humplik & Gašper Tkačik, 2017. "Probabilistic models for neural populations that naturally capture global coupling and criticality," PLOS Computational Biology, Public Library of Science, vol. 13(9), pages 1-26, September.
    2. Mark L Ioffe & Michael J Berry II, 2017. "The structured ‘low temperature’ phase of the retinal population code," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-31, October.
    3. Lucas Rudelt & Daniel González Marx & Michael Wibral & Viola Priesemann, 2021. "Embedding optimization reveals long-lasting history dependence in neural spiking activity," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-51, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Donner & Klaus Obermayer & Hideaki Shimazaki, 2017. "Approximate Inference for Time-Varying Interactions and Macroscopic Dynamics of Neural Populations," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-27, January.
    2. Jan Humplik & Gašper Tkačik, 2017. "Probabilistic models for neural populations that naturally capture global coupling and criticality," PLOS Computational Biology, Public Library of Science, vol. 13(9), pages 1-26, September.
    3. Urs Köster & Jascha Sohl-Dickstein & Charles M Gray & Bruno A Olshausen, 2014. "Modeling Higher-Order Correlations within Cortical Microcolumns," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-12, July.
    4. Stojan Jovanović & Stefan Rotter, 2016. "Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-28, June.
    5. John A. Gaynes & Samuel A. Budoff & Michael J. Grybko & Joshua B. Hunt & Alon Poleg-Polsky, 2022. "Classical center-surround receptive fields facilitate novel object detection in retinal bipolar cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Mark L Ioffe & Michael J Berry II, 2017. "The structured ‘low temperature’ phase of the retinal population code," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-31, October.
    7. Guillaume Viejo & Thomas Cortier & Adrien Peyrache, 2018. "Brain-state invariant thalamo-cortical coordination revealed by non-linear encoders," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-25, March.
    8. Gašper Tkačik & Olivier Marre & Dario Amodei & Elad Schneidman & William Bialek & Michael J Berry II, 2014. "Searching for Collective Behavior in a Large Network of Sensory Neurons," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-23, January.
    9. Stefano Recanatesi & Gabriel Koch Ocker & Michael A Buice & Eric Shea-Brown, 2019. "Dimensionality in recurrent spiking networks: Global trends in activity and local origins in connectivity," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-29, July.
    10. Yeon Jin Kim & Beth B. Peterson & Joanna D. Crook & Hannah R. Joo & Jiajia Wu & Christian Puller & Farrel R. Robinson & Paul D. Gamlin & King-Wai Yau & Felix Viana & John B. Troy & Robert G. Smith & O, 2022. "Origins of direction selectivity in the primate retina," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    11. Andrew Jo & Sercan Deniz & Suraj Cherian & Jian Xu & Daiki Futagi & Steven H. DeVries & Yongling Zhu, 2023. "Modular interneuron circuits control motion sensitivity in the mouse retina," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Elishai Ezra-Tsur & Oren Amsalem & Lea Ankri & Pritish Patil & Idan Segev & Michal Rivlin-Etzion, 2021. "Realistic retinal modeling unravels the differential role of excitation and inhibition to starburst amacrine cells in direction selectivity," PLOS Computational Biology, Public Library of Science, vol. 17(12), pages 1-31, December.
    13. Noel Federman & Sebastián A. Romano & Macarena Amigo-Duran & Lucca Salomon & Antonia Marin-Burgin, 2024. "Acquisition of non-olfactory encoding improves odour discrimination in olfactory cortex," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    14. Daniel Durstewitz, 2017. "A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-33, June.
    15. Porta Mana, PierGianLuca & Rostami, Vahid & Torre, Emiliano & Roudi, Yasser, 2018. "Maximum-entropy and representative samples of neuronal activity: a dilemma," OSF Preprints uz29n, Center for Open Science.
    16. Niru Maheswaranathan & David B Kastner & Stephen A Baccus & Surya Ganguli, 2018. "Inferring hidden structure in multilayered neural circuits," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-30, August.
    17. Seif Eldawlatly & Karim G Oweiss, 2011. "Millisecond-Timescale Local Network Coding in the Rat Primary Somatosensory Cortex," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-14, June.
    18. Alok Maity & Roy Wollman, 2020. "Information transmission from NFkB signaling dynamics to gene expression," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-16, August.
    19. Takafumi Arakaki & G Barello & Yashar Ahmadian, 2019. "Inferring neural circuit structure from datasets of heterogeneous tuning curves," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-38, April.
    20. Cristiano Capone & Carla Filosa & Guido Gigante & Federico Ricci-Tersenghi & Paolo Del Giudice, 2015. "Inferring Synaptic Structure in Presence of Neural Interaction Time Scales," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-21, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.