IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30405-5.html
   My bibliography  Save this article

Origins of direction selectivity in the primate retina

Author

Listed:
  • Yeon Jin Kim

    (University of Washington)

  • Beth B. Peterson

    (University of Washington)

  • Joanna D. Crook

    (University of Washington)

  • Hannah R. Joo

    (University of Washington)

  • Jiajia Wu

    (Northwestern University)

  • Christian Puller

    (University of Washington)

  • Farrel R. Robinson

    (University of Washington
    Washington National Primate Research Center)

  • Paul D. Gamlin

    (University of Alabama at Birmingham)

  • King-Wai Yau

    (Johns Hopkins University School of Medicine)

  • Felix Viana

    (Institute of Neuroscience, UMH-CSIC)

  • John B. Troy

    (Northwestern University)

  • Robert G. Smith

    (University of Pennsylvania)

  • Orin S. Packer

    (University of Washington)

  • Peter B. Detwiler

    (University of Washington)

  • Dennis M. Dacey

    (University of Washington
    Washington National Primate Research Center)

Abstract

From mouse to primate, there is a striking discontinuity in our current understanding of the neural coding of motion direction. In non-primate mammals, directionally selective cell types and circuits are a signature feature of the retina, situated at the earliest stage of the visual process. In primates, by contrast, direction selectivity is a hallmark of motion processing areas in visual cortex, but has not been found in the retina, despite significant effort. Here we combined functional recordings of light-evoked responses and connectomic reconstruction to identify diverse direction-selective cell types in the macaque monkey retina with distinctive physiological properties and synaptic motifs. This circuitry includes an ON-OFF ganglion cell type, a spiking, ON-OFF polyaxonal amacrine cell and the starburst amacrine cell, all of which show direction selectivity. Moreover, we discovered that macaque starburst cells possess a strong, non-GABAergic, antagonistic surround mediated by input from excitatory bipolar cells that is critical for the generation of radial motion sensitivity in these cells. Our findings open a door to investigation of a precortical circuitry that computes motion direction in the primate visual system.

Suggested Citation

  • Yeon Jin Kim & Beth B. Peterson & Joanna D. Crook & Hannah R. Joo & Jiajia Wu & Christian Puller & Farrel R. Robinson & Paul D. Gamlin & King-Wai Yau & Felix Viana & John B. Troy & Robert G. Smith & O, 2022. "Origins of direction selectivity in the primate retina," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30405-5
    DOI: 10.1038/s41467-022-30405-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30405-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30405-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Elishai Ezra-Tsur & Oren Amsalem & Lea Ankri & Pritish Patil & Idan Segev & Michal Rivlin-Etzion, 2021. "Realistic retinal modeling unravels the differential role of excitation and inhibition to starburst amacrine cells in direction selectivity," PLOS Computational Biology, Public Library of Science, vol. 17(12), pages 1-31, December.
    2. L. Federico Rossi & Kenneth D. Harris & Matteo Carandini, 2020. "Spatial connectivity matches direction selectivity in visual cortex," Nature, Nature, vol. 588(7839), pages 648-652, December.
    3. Dennis M. Dacey & Hsi-Wen Liao & Beth B. Peterson & Farrel R. Robinson & Vivianne C. Smith & Joel Pokorny & King-Wai Yau & Paul D. Gamlin, 2005. "Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN," Nature, Nature, vol. 433(7027), pages 749-754, February.
    4. Shai Sabbah & John A. Gemmer & Ananya Bhatia-Lin & Gabrielle Manoff & Gabriel Castro & Jesse K. Siegel & Nathan Jeffery & David M. Berson, 2017. "A retinal code for motion along the gravitational and body axes," Nature, Nature, vol. 546(7659), pages 492-497, June.
    5. Thomas Euler & Peter B. Detwiler & Winfried Denk, 2002. "Directionally selective calcium signals in dendrites of starburst amacrine cells," Nature, Nature, vol. 418(6900), pages 845-852, August.
    6. Huayu Ding & Robert G. Smith & Alon Poleg-Polsky & Jeffrey S. Diamond & Kevin L. Briggman, 2016. "Species-specific wiring for direction selectivity in the mammalian retina," Nature, Nature, vol. 535(7610), pages 105-110, July.
    7. Shelley I. Fried & Thomas A. Münch & Frank S. Werblin, 2002. "Mechanisms and circuitry underlying directional selectivity in the retina," Nature, Nature, vol. 420(6914), pages 411-414, November.
    8. Tom Baden & Philipp Berens & Katrin Franke & Miroslav Román Rosón & Matthias Bethge & Thomas Euler, 2016. "The functional diversity of retinal ganglion cells in the mouse," Nature, Nature, vol. 529(7586), pages 345-350, January.
    9. Xiaolin Huang & Melissa Rangel & Kevin L. Briggman & Wei Wei, 2019. "Neural mechanisms of contextual modulation in the retinal direction selective circuit," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    10. Alain J. Labro & Michael F. Priest & Jérôme J. Lacroix & Dirk J. Snyders & Francisco Bezanilla, 2015. "Kv3.1 uses a timely resurgent K+ current to secure action potential repolarization," Nature Communications, Nature, vol. 6(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Héctor Acarón Ledesma & Jennifer Ding & Swen Oosterboer & Xiaolin Huang & Qiang Chen & Sui Wang & Michael Z. Lin & Wei Wei, 2024. "Dendritic mGluR2 and perisomatic Kv3 signaling regulate dendritic computation of mouse starburst amacrine cells," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. John A. Gaynes & Samuel A. Budoff & Michael J. Grybko & Joshua B. Hunt & Alon Poleg-Polsky, 2022. "Classical center-surround receptive fields facilitate novel object detection in retinal bipolar cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Jen-Chun Hsiang & Ning Shen & Florentina Soto & Daniel Kerschensteiner, 2024. "Distributed feature representations of natural stimuli across parallel retinal pathways," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    4. Dominic J. Vita & Fernanda S. Orsi & Nathan G. Stanko & Natalie A. Clark & Alexandre Tiriac, 2024. "Development and organization of the retinal orientation selectivity map," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Jason S Prentice & Olivier Marre & Mark L Ioffe & Adrianna R Loback & Gašper Tkačik & Michael J Berry II, 2016. "Error-Robust Modes of the Retinal Population Code," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-32, November.
    6. Andrew Jo & Sercan Deniz & Suraj Cherian & Jian Xu & Daiki Futagi & Steven H. DeVries & Yongling Zhu, 2023. "Modular interneuron circuits control motion sensitivity in the mouse retina," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. David Swygart & Wan-Qing Yu & Shunsuke Takeuchi & Rachel O. L. Wong & Gregory W. Schwartz, 2024. "A presynaptic source drives differing levels of surround suppression in two mouse retinal ganglion cell types," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    8. Adam Mani & Xinzhu Yang & Tiffany A. Zhao & Megan L. Leyrer & Daniel Schreck & David M. Berson, 2023. "A circuit suppressing retinal drive to the optokinetic system during fast image motion," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    10. Qiansheng Liang & Gamma Chi & Leonardo Cirqueira & Lianteng Zhi & Agostino Marasco & Nadia Pilati & Martin J. Gunthorpe & Giuseppe Alvaro & Charles H. Large & David B. Sauer & Werner Treptow & Manuel , 2024. "The binding and mechanism of a positive allosteric modulator of Kv3 channels," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    11. Lei Wang & Xin Liu & Yin Zhang, 2023. "A communication-efficient and privacy-aware distributed algorithm for sparse PCA," Computational Optimization and Applications, Springer, vol. 85(3), pages 1033-1072, July.
    12. Martin J. Gunthorpe, 2022. "Timing is everything: structural insights into the disease-linked Kv3 channels controlling fast action-potential firing in the brain," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    13. Luke E Rogerson & Zhijian Zhao & Katrin Franke & Thomas Euler & Philipp Berens, 2019. "Bayesian hypothesis testing and experimental design for two-photon imaging data," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-27, August.
    14. Yuxiao Hua & Yuki Todo & Zheng Tang & Sichen Tao & Bin Li & Riku Inoue, 2022. "A Novel Bio-Inspired Motion Direction Detection Mechanism in Binary and Grayscale Background," Mathematics, MDPI, vol. 10(20), pages 1-16, October.
    15. Ling Li & Shasha Li & Wenhai Wang & Jielian Zhang & Yiming Sun & Qunrui Deng & Tao Zheng & Jianting Lu & Wei Gao & Mengmeng Yang & Hanyu Wang & Yuan Pan & Xueting Liu & Yani Yang & Jingbo Li & Nengjie, 2024. "Adaptative machine vision with microsecond-level accurate perception beyond human retina," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Jérémie Sibille & Carolin Gehr & Jonathan I. Benichov & Hymavathy Balasubramanian & Kai Lun Teh & Tatiana Lupashina & Daniela Vallentin & Jens Kremkow, 2022. "High-density electrode recordings reveal strong and specific connections between retinal ganglion cells and midbrain neurons," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    17. Andrew Jo & Sercan Deniz & Jian Xu & Robert M. Duvoisin & Steven H. DeVries & Yongling Zhu, 2023. "A sign-inverted receptive field of inhibitory interneurons provides a pathway for ON-OFF interactions in the retina," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    18. Elishai Ezra-Tsur & Oren Amsalem & Lea Ankri & Pritish Patil & Idan Segev & Michal Rivlin-Etzion, 2021. "Realistic retinal modeling unravels the differential role of excitation and inhibition to starburst amacrine cells in direction selectivity," PLOS Computational Biology, Public Library of Science, vol. 17(12), pages 1-31, December.
    19. Tobias Clark & Vera Hapiak & Mitchell Oakes & Holly Mills & Richard Komuniecki, 2018. "Monoamines differentially modulate neuropeptide release from distinct sites within a single neuron pair," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-22, May.
    20. Carles Bosch & Tobias Ackels & Alexandra Pacureanu & Yuxin Zhang & Christopher J. Peddie & Manuel Berning & Norman Rzepka & Marie-Christine Zdora & Isabell Whiteley & Malte Storm & Anne Bonnin & Chris, 2022. "Functional and multiscale 3D structural investigation of brain tissue through correlative in vivo physiology, synchrotron microtomography and volume electron microscopy," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30405-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.