IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004927.html
   My bibliography  Save this article

Model Constrained by Visual Hierarchy Improves Prediction of Neural Responses to Natural Scenes

Author

Listed:
  • Ján Antolík
  • Sonja B Hofer
  • James A Bednar
  • Thomas D Mrsic-Flogel

Abstract

Accurate estimation of neuronal receptive fields is essential for understanding sensory processing in the early visual system. Yet a full characterization of receptive fields is still incomplete, especially with regard to natural visual stimuli and in complete populations of cortical neurons. While previous work has incorporated known structural properties of the early visual system, such as lateral connectivity, or imposing simple-cell-like receptive field structure, no study has exploited the fact that nearby V1 neurons share common feed-forward input from thalamus and other upstream cortical neurons. We introduce a new method for estimating receptive fields simultaneously for a population of V1 neurons, using a model-based analysis incorporating knowledge of the feed-forward visual hierarchy. We assume that a population of V1 neurons shares a common pool of thalamic inputs, and consists of two layers of simple and complex-like V1 neurons. When fit to recordings of a local population of mouse layer 2/3 V1 neurons, our model offers an accurate description of their response to natural images and significant improvement of prediction power over the current state-of-the-art methods. We show that the responses of a large local population of V1 neurons with locally diverse receptive fields can be described with surprisingly limited number of thalamic inputs, consistent with recent experimental findings. Our structural model not only offers an improved functional characterization of V1 neurons, but also provides a framework for studying the relationship between connectivity and function in visual cortical areas.Author Summary: A key goal in sensory neuroscience is to understand the relationship between sensory stimuli and patterns of activity they elicit in networks of sensory neurons. Many models have been proposed in the past; however, these models have largely ignored the known architecture of primary visual cortex revealed in experimental studies, thus limiting their ability to accurately describe neural responses to sensory stimuli. Here we propose a model of primary visual cortex that takes into account the known architecture of visual cortex, specifically the fact that only a limited number of thalamic inputs with stereotypical receptive fields are shared within a local area of visual cortex, and the hierarchical progression from neurons with linear receptive fields (simple cells) to neurons with non-linear receptive fields (complex cells). We show that the proposed model outperforms state-of-the-art methods for receptive field estimation when fitted to two-photon calcium recordings of local populations of mouse V1 neurons responding to natural image stimuli. The model demonstrates how the diverse set of receptive fields in the local population of neurons can be constructed from a limited number (

Suggested Citation

  • Ján Antolík & Sonja B Hofer & James A Bednar & Thomas D Mrsic-Flogel, 2016. "Model Constrained by Visual Hierarchy Improves Prediction of Neural Responses to Natural Scenes," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-22, June.
  • Handle: RePEc:plo:pcbi00:1004927
    DOI: 10.1371/journal.pcbi.1004927
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004927
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004927&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004927?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kenichi Ohki & Sooyoung Chung & Yeang H. Ch'ng & Prakash Kara & R. Clay Reid, 2005. "Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex," Nature, Nature, vol. 433(7026), pages 597-603, February.
    2. James M McFarland & Yuwei Cui & Daniel A Butts, 2013. "Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs," PLOS Computational Biology, Public Library of Science, vol. 9(7), pages 1-18, July.
    3. Kendrick N. Kay & Thomas Naselaris & Ryan J. Prenger & Jack L. Gallant, 2008. "Identifying natural images from human brain activity," Nature, Nature, vol. 452(7185), pages 352-355, March.
    4. Mijung Park & Jonathan W Pillow, 2011. "Receptive Field Inference with Localized Priors," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivar L Thorson & Jean Liénard & Stephen V David, 2015. "The Essential Complexity of Auditory Receptive Fields," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-33, December.
    2. Ross S Williamson & Maneesh Sahani & Jonathan W Pillow, 2015. "The Equivalence of Information-Theoretic and Likelihood-Based Methods for Neural Dimensionality Reduction," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-31, April.
    3. Umut Güçlü & Marcel A J van Gerven, 2014. "Unsupervised Feature Learning Improves Prediction of Human Brain Activity in Response to Natural Images," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-12, August.
    4. Yuanqing Li & Guangyi Wang & Jinyi Long & Zhuliang Yu & Biao Huang & Xiaojian Li & Tianyou Yu & Changhong Liang & Zheng Li & Pei Sun, 2011. "Reproducibility and Discriminability of Brain Patterns of Semantic Categories Enhanced by Congruent Audiovisual Stimuli," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-14, June.
    5. Guillermo A Cecchi & Lejian Huang & Javeria Ali Hashmi & Marwan Baliki & María V Centeno & Irina Rish & A Vania Apkarian, 2012. "Predictive Dynamics of Human Pain Perception," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-12, October.
    6. Zvi N. Roth & Kendrick Kay & Elisha P. Merriam, 2022. "Natural scene sampling reveals reliable coarse-scale orientation tuning in human V1," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Hamed Nili & Cai Wingfield & Alexander Walther & Li Su & William Marslen-Wilson & Nikolaus Kriegeskorte, 2014. "A Toolbox for Representational Similarity Analysis," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-11, April.
    8. Hamed Nili & Alexander Walther & Arjen Alink & Nikolaus Kriegeskorte, 2020. "Inferring exemplar discriminability in brain representations," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-28, June.
    9. Johannes Burge & Priyank Jaini, 2017. "Accuracy Maximization Analysis for Sensory-Perceptual Tasks: Computational Improvements, Filter Robustness, and Coding Advantages for Scaled Additive Noise," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-32, February.
    10. Dominic J. Vita & Fernanda S. Orsi & Nathan G. Stanko & Natalie A. Clark & Alexandre Tiriac, 2024. "Development and organization of the retinal orientation selectivity map," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Jacob M. Paul & Martijn Ackooij & Tuomas C. Cate & Ben M. Harvey, 2022. "Numerosity tuning in human association cortices and local image contrast representations in early visual cortex," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Javier G. Orlandi & Mohammad Abdolrahmani & Ryo Aoki & Dmitry R. Lyamzin & Andrea Benucci, 2023. "Distributed context-dependent choice information in mouse posterior cortex," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. Agustin Lage-Castellanos & Giancarlo Valente & Elia Formisano & Federico De Martino, 2019. "Methods for computing the maximum performance of computational models of fMRI responses," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-25, March.
    14. Kay H Brodersen & Thomas M Schofield & Alexander P Leff & Cheng Soon Ong & Ekaterina I Lomakina & Joachim M Buhmann & Klaas E Stephan, 2011. "Generative Embedding for Model-Based Classification of fMRI Data," PLOS Computational Biology, Public Library of Science, vol. 7(6), pages 1-19, June.
    15. Elaine Tring & Konnie K. Duan & Dario L. Ringach, 2022. "ON/OFF domains shape receptive field structure in mouse visual cortex," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Shinsuke Koyama & Uri Eden & Emery Brown & Robert Kass, 2010. "Bayesian decoding of neural spike trains," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 37-59, February.
    17. Lucas Theis & Andrè Maia Chagas & Daniel Arnstein & Cornelius Schwarz & Matthias Bethge, 2013. "Beyond GLMs: A Generative Mixture Modeling Approach to Neural System Identification," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-9, November.
    18. Kiyohito Iigaya & Sanghyun Yi & Iman A. Wahle & Sandy Tanwisuth & Logan Cross & John P. O’Doherty, 2023. "Neural mechanisms underlying the hierarchical construction of perceived aesthetic value," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    19. Ming Bo Cai & Nicolas W Schuck & Jonathan W Pillow & Yael Niv, 2019. "Representational structure or task structure? Bias in neural representational similarity analysis and a Bayesian method for reducing bias," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-30, May.
    20. Ziniu Wu & Harold Rockwell & Yimeng Zhang & Shiming Tang & Tai Sing Lee, 2021. "Complexity and diversity in sparse code priors improve receptive field characterization of Macaque V1 neurons," PLOS Computational Biology, Public Library of Science, vol. 17(10), pages 1-21, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.