Tuning parameters for polygenic risk score methods using GWAS summary statistics from training data
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-44009-0
Download full text from publisher
References listed on IDEAS
- Ledoit, Olivier & Wolf, Michael, 2004.
"A well-conditioned estimator for large-dimensional covariance matrices,"
Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
- Ledoit, Olivier & Wolf, Michael, 2000. "A well conditioned estimator for large dimensional covariance matrices," DES - Working Papers. Statistics and Econometrics. WS 10087, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Tian Ge & Chia-Yen Chen & Yang Ni & Yen-Chen Anne Feng & Jordan W. Smoller, 2019. "Polygenic prediction via Bayesian regression and continuous shrinkage priors," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
- Shuang Song & Wei Jiang & Lin Hou & Hongyu Zhao, 2020. "Leveraging effect size distributions to improve polygenic risk scores derived from summary statistics of genome-wide association studies," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-18, February.
- Ganna Leonenko & Emily Baker & Joshua Stevenson-Hoare & Annerieke Sierksma & Mark Fiers & Julie Williams & Bart Strooper & Valentina Escott-Price, 2021. "Identifying individuals with high risk of Alzheimer’s disease using polygenic risk scores," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
- Geyu Zhou & Hongyu Zhao, 2021. "A fast and robust Bayesian nonparametric method for prediction of complex traits using summary statistics," PLOS Genetics, Public Library of Science, vol. 17(7), pages 1-17, July.
- Clare Bycroft & Colin Freeman & Desislava Petkova & Gavin Band & Lloyd T. Elliott & Kevin Sharp & Allan Motyer & Damjan Vukcevic & Olivier Delaneau & Jared O’Connell & Adrian Cortes & Samantha Welsh &, 2018. "The UK Biobank resource with deep phenotyping and genomic data," Nature, Nature, vol. 562(7726), pages 203-209, October.
- Dodd L.E. & Pepe M.S., 2003. "Semiparametric Regression for the Area Under the Receiver Operating Characteristic Curve," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 409-417, January.
- Kyriaki Michailidou & Sara Lindström & Joe Dennis & Jonathan Beesley & Shirley Hui & Siddhartha Kar & Audrey Lemaçon & Penny Soucy & Dylan Glubb & Asha Rostamianfar & Manjeet K. Bolla & Qin Wang & Jon, 2017. "Association analysis identifies 65 new breast cancer risk loci," Nature, Nature, vol. 551(7678), pages 92-94, November.
- Cai, Tony & Liu, Weidong, 2011. "Adaptive Thresholding for Sparse Covariance Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 672-684.
- Pardo-Fernandez, Juan Carlos & Rodriguez-Alvarez, Maria Xose & Van Keilegom, Ingrid, 2014. "A review on ROC curves in the presence of covariates," LIDAM Reprints ISBA 2014044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Frank Dudbridge, 2013. "Power and Predictive Accuracy of Polygenic Risk Scores," PLOS Genetics, Public Library of Science, vol. 9(3), pages 1-17, March.
- Michael J. Daniels & Robert E. Kass, 2001. "Shrinkage Estimators for Covariance Matrices," Biometrics, The International Biometric Society, vol. 57(4), pages 1173-1184, December.
- Luke R. Lloyd-Jones & Jian Zeng & Julia Sidorenko & Loïc Yengo & Gerhard Moser & Kathryn E. Kemper & Huanwei Wang & Zhili Zheng & Reedik Magi & Tõnu Esko & Andres Metspalu & Naomi R. Wray & Michael E., 2019. "Improved polygenic prediction by Bayesian multiple regression on summary statistics," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
- Holly Janes & Margaret S. Pepe, 2009. "Adjusting for covariate effects on classification accuracy using the covariate-adjusted receiver operating characteristic curve," Biometrika, Biometrika Trust, vol. 96(2), pages 371-382.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rikifumi Ohta & Yosuke Tanigawa & Yuta Suzuki & Manolis Kellis & Shinichi Morishita, 2024. "A polygenic score method boosted by non-additive models," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
- Carla Márquez-Luna & Steven Gazal & Po-Ru Loh & Samuel S. Kim & Nicholas Furlotte & Adam Auton & Alkes L. Price, 2021. "Incorporating functional priors improves polygenic prediction accuracy in UK Biobank and 23andMe data sets," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
- Chachrit Khunsriraksakul & Qinmengge Li & Havell Markus & Matthew T. Patrick & Renan Sauteraud & Daniel McGuire & Xingyan Wang & Chen Wang & Lida Wang & Siyuan Chen & Ganesh Shenoy & Bingshan Li & Xue, 2023. "Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019.
"A multiple testing approach to the regularisation of large sample correlation matrices,"
Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
- Natalia Bailey & M. Hashem Pesaran & L. Vanessa Smith, 2014. "A Multiple Testing Approach to the Regularisation of Large Sample Correlation Matrices," CESifo Working Paper Series 4834, CESifo.
- Natalia Bailey & M. Hashem Pesaran & L. Vanessa Smith, 2015. "A Multiple Testing Approach to the Regularisation of Large Sample Correlation Matrices," Working Papers 764, Queen Mary University of London, School of Economics and Finance.
- Natalia Bailey & Vanessa Smith & M. Hashem Pesaran, 2014. "A multiple testing approach to the regularisation of large sample correlation matrices," Cambridge Working Papers in Economics 1413, Faculty of Economics, University of Cambridge.
- Ikeda, Yuki & Kubokawa, Tatsuya & Srivastava, Muni S., 2016. "Comparison of linear shrinkage estimators of a large covariance matrix in normal and non-normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 95-108.
- Gillen, Benjamin J., 2014. "An empirical Bayesian approach to stein-optimal covariance matrix estimation," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 402-420.
- Clara Albiñana & Zhihong Zhu & Andrew J. Schork & Andrés Ingason & Hugues Aschard & Isabell Brikell & Cynthia M. Bulik & Liselotte V. Petersen & Esben Agerbo & Jakob Grove & Merete Nordentoft & David , 2023. "Multi-PGS enhances polygenic prediction by combining 937 polygenic scores," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Wenhan Chen & Yang Wu & Zhili Zheng & Ting Qi & Peter M. Visscher & Zhihong Zhu & Jian Yang, 2021. "Improved analyses of GWAS summary statistics by reducing data heterogeneity and errors," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
- Yosuke Tanigawa & Junyang Qian & Guhan Venkataraman & Johanne Marie Justesen & Ruilin Li & Robert Tibshirani & Trevor Hastie & Manuel A Rivas, 2022. "Significant sparse polygenic risk scores across 813 traits in UK Biobank," PLOS Genetics, Public Library of Science, vol. 18(3), pages 1-21, March.
- Junyang Qian & Yosuke Tanigawa & Wenfei Du & Matthew Aguirre & Chris Chang & Robert Tibshirani & Manuel A Rivas & Trevor Hastie, 2020. "A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression with application to the UK Biobank," PLOS Genetics, Public Library of Science, vol. 16(10), pages 1-30, October.
- Hannart, Alexis & Naveau, Philippe, 2014. "Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 149-162.
- Shahram Bahrami & Kaja Nordengen & Jaroslav Rokicki & Alexey A. Shadrin & Zillur Rahman & Olav B. Smeland & Piotr P. Jaholkowski & Nadine Parker & Pravesh Parekh & Kevin S. O’Connell & Torbjørn Elvsås, 2024. "The genetic landscape of basal ganglia and implications for common brain disorders," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Konno, Yoshihiko, 2009. "Shrinkage estimators for large covariance matrices in multivariate real and complex normal distributions under an invariant quadratic loss," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2237-2253, November.
- Mitchell, Brittany L. & Hansell, Narelle K. & McAloney, Kerrie & Martin, Nicholas G. & Wright, Margaret J. & Renteria, Miguel E. & Grasby, Katrina L., 2022. "Polygenic influences associated with adolescent cognitive skills," Intelligence, Elsevier, vol. 94(C).
- Tae-Hwy Lee & Ekaterina Seregina, 2020.
"Learning from Forecast Errors: A New Approach to Forecast Combination,"
Working Papers
202024, University of California at Riverside, Department of Economics.
- Tae-Hwy Lee & Ekaterina Seregina, 2020. "Learning from Forecast Errors: A New Approach to Forecast Combinations," Papers 2011.02077, arXiv.org, revised May 2021.
- George B. Busby & Scott Kulm & Alessandro Bolli & Jen Kintzle & Paolo Di Domenico & Giordano Bottà, 2023. "Ancestry-specific polygenic risk scores are risk enhancers for clinical cardiovascular disease assessments," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Ruoyu Tian & Tian Ge & Hyeokmoon Kweon & Daniel B. Rocha & Max Lam & Jimmy Z. Liu & Kritika Singh & Daniel F. Levey & Joel Gelernter & Murray B. Stein & Ellen A. Tsai & Hailiang Huang & Christopher F., 2024. "Whole-exome sequencing in UK Biobank reveals rare genetic architecture for depression," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Jingying Yang, 2024. "Element Aggregation for Estimation of High-Dimensional Covariance Matrices," Mathematics, MDPI, vol. 12(7), pages 1-16, March.
- Tae-Hwy Lee & Millie Yi Mao & Aman Ullah, 2021.
"Estimation of high-dimensional dynamic conditional precision matrices with an application to forecast combination,"
Econometric Reviews, Taylor & Francis Journals, vol. 40(10), pages 905-918, November.
- Tae-Hwy Lee & Millie Yi Mao & Aman Ullah, 2020. "Estimation of High-Dimensional Dynamic Conditional Precision Matrices with an Application to Forecast Combination," Working Papers 202012, University of California at Riverside, Department of Economics.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44009-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.