IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27438-7.html
   My bibliography  Save this article

Improved analyses of GWAS summary statistics by reducing data heterogeneity and errors

Author

Listed:
  • Wenhan Chen

    (The University of Queensland
    Garvan Institute of Medical Research)

  • Yang Wu

    (The University of Queensland)

  • Zhili Zheng

    (The University of Queensland)

  • Ting Qi

    (The University of Queensland
    Westlake University
    Westlake Laboratory of Life Sciences and Biomedicine)

  • Peter M. Visscher

    (The University of Queensland)

  • Zhihong Zhu

    (The University of Queensland)

  • Jian Yang

    (The University of Queensland
    Westlake University
    Westlake Laboratory of Life Sciences and Biomedicine)

Abstract

Summary statistics from genome-wide association studies (GWAS) have facilitated the development of various summary data-based methods, which typically require a reference sample for linkage disequilibrium (LD) estimation. Analyses using these methods may be biased by errors in GWAS summary data or LD reference or heterogeneity between GWAS and LD reference. Here we propose a quality control method, DENTIST, that leverages LD among genetic variants to detect and eliminate errors in GWAS or LD reference and heterogeneity between the two. Through simulations, we demonstrate that DENTIST substantially reduces false-positive rate in detecting secondary signals in the summary-data-based conditional and joint association analysis, especially for imputed rare variants (false-positive rate reduced from >28% to

Suggested Citation

  • Wenhan Chen & Yang Wu & Zhili Zheng & Ting Qi & Peter M. Visscher & Zhihong Zhu & Jian Yang, 2021. "Improved analyses of GWAS summary statistics by reducing data heterogeneity and errors," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27438-7
    DOI: 10.1038/s41467-021-27438-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27438-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27438-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matthew R. Robinson & Aaron Kleinman & Mariaelisa Graff & Anna A. E. Vinkhuyzen & David Couper & Michael B. Miller & Wouter J. Peyrot & Abdel Abdellaoui & Brendan P. Zietsch & Ilja M. Nolte & Jana V. , 2017. "Genetic evidence of assortative mating in humans," Nature Human Behaviour, Nature, vol. 1(1), pages 1-13, January.
    2. Claudia Giambartolomei & Damjan Vukcevic & Eric E Schadt & Lude Franke & Aroon D Hingorani & Chris Wallace & Vincent Plagnol, 2014. "Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics," PLOS Genetics, Public Library of Science, vol. 10(5), pages 1-15, May.
    3. Jie Huang & Bryan Howie & Shane McCarthy & Yasin Memari & Klaudia Walter & Josine L. Min & Petr Danecek & Giovanni Malerba & Elisabetta Trabetti & Hou-Feng Zheng & Giovanni Gambaro & J. Brent Richards, 2015. "Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
    4. Clare Bycroft & Colin Freeman & Desislava Petkova & Gavin Band & Lloyd T. Elliott & Kevin Sharp & Allan Motyer & Damjan Vukcevic & Olivier Delaneau & Jared O’Connell & Adrian Cortes & Samantha Welsh &, 2018. "The UK Biobank resource with deep phenotyping and genomic data," Nature, Nature, vol. 562(7726), pages 203-209, October.
    5. Zhihong Zhu & Zhili Zheng & Futao Zhang & Yang Wu & Maciej Trzaskowski & Robert Maier & Matthew R. Robinson & John J. McGrath & Peter M. Visscher & Naomi R. Wray & Jian Yang, 2018. "Causal associations between risk factors and common diseases inferred from GWAS summary data," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    6. Gao Wang & Abhishek Sarkar & Peter Carbonetto & Matthew Stephens, 2020. "A simple new approach to variable selection in regression, with application to genetic fine mapping," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1273-1300, December.
    7. Kyriaki Michailidou & Sara Lindström & Joe Dennis & Jonathan Beesley & Shirley Hui & Siddhartha Kar & Audrey Lemaçon & Penny Soucy & Dylan Glubb & Asha Rostamianfar & Manjeet K. Bolla & Qin Wang & Jon, 2017. "Association analysis identifies 65 new breast cancer risk loci," Nature, Nature, vol. 551(7678), pages 92-94, November.
    8. Luke R. Lloyd-Jones & Jian Zeng & Julia Sidorenko & Loïc Yengo & Gerhard Moser & Kathryn E. Kemper & Huanwei Wang & Zhili Zheng & Reedik Magi & Tõnu Esko & Andres Metspalu & Naomi R. Wray & Michael E., 2019. "Improved polygenic prediction by Bayesian multiple regression on summary statistics," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    9. John Novembre & Toby Johnson & Katarzyna Bryc & Zoltán Kutalik & Adam R. Boyko & Adam Auton & Amit Indap & Karen S. King & Sven Bergmann & Matthew R. Nelson & Matthew Stephens & Carlos D. Bustamante, 2008. "Genes mirror geography within Europe," Nature, Nature, vol. 456(7219), pages 274-274, November.
    10. John Novembre & Toby Johnson & Katarzyna Bryc & Zoltán Kutalik & Adam R. Boyko & Adam Auton & Amit Indap & Karen S. King & Sven Bergmann & Matthew R. Nelson & Matthew Stephens & Carlos D. Bustamante, 2008. "Genes mirror geography within Europe," Nature, Nature, vol. 456(7218), pages 98-101, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingxuan Cai & Zhiwei Wang & Jiashun Xiao & Xianghong Hu & Gang Chen & Can Yang, 2023. "XMAP: Cross-population fine-mapping by leveraging genetic diversity and accounting for confounding bias," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natalie DeForest & Yuqi Wang & Zhiyi Zhu & Jacqueline S. Dron & Ryan Koesterer & Pradeep Natarajan & Jason Flannick & Tiffany Amariuta & Gina M. Peloso & Amit R. Majithia, 2024. "Genome-wide discovery and integrative genomic characterization of insulin resistance loci using serum triglycerides to HDL-cholesterol ratio as a proxy," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Sylvia Hartmann & Summaira Yasmeen & Benjamin M. Jacobs & Spiros Denaxas & Munir Pirmohamed & Eric R. Gamazon & Mark J. Caulfield & Harry Hemingway & Maik Pietzner & Claudia Langenberg, 2023. "ADRA2A and IRX1 are putative risk genes for Raynaud’s phenomenon," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Aman Agrawal & Alec M Chiu & Minh Le & Eran Halperin & Sriram Sankararaman, 2020. "Scalable probabilistic PCA for large-scale genetic variation data," PLOS Genetics, Public Library of Science, vol. 16(5), pages 1-19, May.
    4. Dalton Conley & Ramina Sotoudeh & Thomas Laidley, 2019. "Birth Weight and Development: Bias or Heterogeneity by Polygenic Risk Factors?," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 38(6), pages 811-839, December.
    5. Qingbo S. Wang & Ryuya Edahiro & Ho Namkoong & Takanori Hasegawa & Yuya Shirai & Kyuto Sonehara & Hiromu Tanaka & Ho Lee & Ryunosuke Saiki & Takayoshi Hyugaji & Eigo Shimizu & Kotoe Katayama & Masahir, 2022. "The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    6. Wei Jiang & Ling Chen & Matthew J. Girgenti & Hongyu Zhao, 2024. "Tuning parameters for polygenic risk score methods using GWAS summary statistics from training data," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Eeva Sliz & Jaakko S. Tyrmi & Nilufer Rahmioglu & Krina T. Zondervan & Christian M. Becker & Outi Uimari & Johannes Kettunen, 2023. "Evidence of a causal effect of genetic tendency to gain muscle mass on uterine leiomyomata," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Zhen Qiao & Julia Sidorenko & Joana A. Revez & Angli Xue & Xueling Lu & Katri Pärna & Harold Snieder & Peter M. Visscher & Naomi R. Wray & Loic Yengo, 2023. "Estimation and implications of the genetic architecture of fasting and non-fasting blood glucose," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Diana Dunca & Sandesh Chopade & María Gordillo-Marañón & Aroon D. Hingorani & Karoline Kuchenbaecker & Chris Finan & Amand F. Schmidt, 2024. "Comparing the effects of CETP in East Asian and European ancestries: a Mendelian randomization study," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Mary P. LaPierre & Katherine Lawler & Svenja Godbersen & I. Sadaf Farooqi & Markus Stoffel, 2022. "MicroRNA-7 regulates melanocortin circuits involved in mammalian energy homeostasis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    11. Maik Pietzner & Eleanor Wheeler & Julia Carrasco-Zanini & Nicola D. Kerrison & Erin Oerton & Mine Koprulu & Jian’an Luan & Aroon D. Hingorani & Steve A. Williams & Nicholas J. Wareham & Claudia Langen, 2021. "Synergistic insights into human health from aptamer- and antibody-based proteomic profiling," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    12. Hui Chen & Zeyang Wang & Lihai Gong & Qixuan Wang & Wenyan Chen & Jia Wang & Xuelian Ma & Ruofan Ding & Xing Li & Xudong Zou & Mireya Plass & Cheng Lian & Ting Ni & Gong-Hong Wei & Wei Li & Lin Deng &, 2024. "A distinct class of pan-cancer susceptibility genes revealed by an alternative polyadenylation transcriptome-wide association study," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Yaohua Yang & Yaxin Chen & Shuai Xu & Xingyi Guo & Guochong Jia & Jie Ping & Xiang Shu & Tianying Zhao & Fangcheng Yuan & Gang Wang & Yufang Xie & Hang Ci & Hongmo Liu & Yawen Qi & Yongjun Liu & Dan L, 2024. "Integrating muti-omics data to identify tissue-specific DNA methylation biomarkers for cancer risk," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. William R. Reay & Michael P. Geaghan & Murray J. Cairns, 2022. "The genetic architecture of pneumonia susceptibility implicates mucin biology and a relationship with psychiatric illness," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    15. Yanyu Xiao & Jingjing Wang & Jiaqi Li & Peijing Zhang & Jingyu Li & Yincong Zhou & Qing Zhou & Ming Chen & Xin Sheng & Zhihong Liu & Xiaoping Han & Guoji Guo, 2023. "An analytical framework for decoding cell type-specific genetic variation of gene regulation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Marie C. Sadler & Chiara Auwerx & Kaido Lepik & Eleonora Porcu & Zoltán Kutalik, 2022. "Quantifying the role of transcript levels in mediating DNA methylation effects on complex traits and diseases," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Marco Lopez-Cruz & Fernando M. Aguate & Jacob D. Washburn & Natalia Leon & Shawn M. Kaeppler & Dayane Cristina Lima & Ruijuan Tan & Addie Thompson & Laurence Willard Bretonne & Gustavo los Campos, 2023. "Leveraging data from the Genomes-to-Fields Initiative to investigate genotype-by-environment interactions in maize in North America," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    18. Brittany L. Mitchell & Jake R. Saklatvala & Nick Dand & Fiona A. Hagenbeek & Xin Li & Josine L. Min & Laurent Thomas & Meike Bartels & Jouke Hottenga & Michelle K. Lupton & Dorret I. Boomsma & Xianjun, 2022. "Genome-wide association meta-analysis identifies 29 new acne susceptibility loci," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Zichen Zhang & Ye Eun Bae & Jonathan R. Bradley & Lang Wu & Chong Wu, 2022. "SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Zhaotong Lin & Wei Pan, 2024. "A robust cis-Mendelian randomization method with application to drug target discovery," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27438-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.