IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48654-x.html
   My bibliography  Save this article

A polygenic score method boosted by non-additive models

Author

Listed:
  • Rikifumi Ohta

    (The University of Tokyo)

  • Yosuke Tanigawa

    (Massachusetts Institute of Technology
    Broad Institute of MIT and Harvard)

  • Yuta Suzuki

    (The University of Tokyo)

  • Manolis Kellis

    (Massachusetts Institute of Technology
    Broad Institute of MIT and Harvard)

  • Shinichi Morishita

    (The University of Tokyo)

Abstract

Dominance heritability in complex traits has received increasing recognition. However, most polygenic score (PGS) approaches do not incorporate non-additive effects. Here, we present GenoBoost, a flexible PGS modeling framework capable of considering both additive and non-additive effects, specifically focusing on genetic dominance. Building on statistical boosting theory, we derive provably optimal GenoBoost scores and provide its efficient implementation for analyzing large-scale cohorts. We benchmark it against seven commonly used PGS methods and demonstrate its competitive predictive performance. GenoBoost is ranked the best for four traits and second-best for three traits among twelve tested disease outcomes in UK Biobank. We reveal that GenoBoost improves prediction for autoimmune diseases by incorporating non-additive effects localized in the MHC locus and, more broadly, works best in less polygenic traits. We further demonstrate that GenoBoost can infer the mode of genetic inheritance without requiring prior knowledge. For example, GenoBoost finds non-zero genetic dominance effects for 602 of 900 selected genetic variants, resulting in 2.5% improvements in predicting psoriasis cases. Lastly, we show that GenoBoost can prioritize genetic loci with genetic dominance not previously reported in the GWAS catalog. Our results highlight the increased accuracy and biological insights from incorporating non-additive effects in PGS models.

Suggested Citation

  • Rikifumi Ohta & Yosuke Tanigawa & Yuta Suzuki & Manolis Kellis & Shinichi Morishita, 2024. "A polygenic score method boosted by non-additive models," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48654-x
    DOI: 10.1038/s41467-024-48654-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48654-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48654-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tian Ge & Chia-Yen Chen & Yang Ni & Yen-Chen Anne Feng & Jordan W. Smoller, 2019. "Polygenic prediction via Bayesian regression and continuous shrinkage priors," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Fredrick R. Schumacher & Stephanie L. Schmit & Shuo Jiao & Christopher K. Edlund & Hansong Wang & Ben Zhang & Li Hsu & Shu-Chen Huang & Christopher P. Fischer & John F. Harju & Gregory E. Idos & Flavi, 2015. "Genome-wide association study of colorectal cancer identifies six new susceptibility loci," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    3. Luke R. Lloyd-Jones & Jian Zeng & Julia Sidorenko & Loïc Yengo & Gerhard Moser & Kathryn E. Kemper & Huanwei Wang & Zhili Zheng & Reedik Magi & Tõnu Esko & Andres Metspalu & Naomi R. Wray & Michael E., 2019. "Improved polygenic prediction by Bayesian multiple regression on summary statistics," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    4. Fredrick R. Schumacher & Stephanie L. Schmit & Shuo Jiao & Christopher K. Edlund & Hansong Wang & Ben Zhang & Li Hsu & Shu-Chen Huang & Christopher P. Fischer & John F. Harju & Gregory E. Idos & Flavi, 2015. "Correction: Corrigendum: Genome-wide association study of colorectal cancer identifies six new susceptibility loci," Nature Communications, Nature, vol. 6(1), pages 1-1, December.
    5. Lam C. Tsoi & Philip E. Stuart & Chao Tian & Johann E. Gudjonsson & Sayantan Das & Matthew Zawistowski & Eva Ellinghaus & Jonathan N. Barker & Vinod Chandran & Nick Dand & Kristina Callis Duffin & Cha, 2017. "Large scale meta-analysis characterizes genetic architecture for common psoriasis associated variants," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    6. Clare Bycroft & Colin Freeman & Desislava Petkova & Gavin Band & Lloyd T. Elliott & Kevin Sharp & Allan Motyer & Damjan Vukcevic & Olivier Delaneau & Jared O’Connell & Adrian Cortes & Samantha Welsh &, 2018. "The UK Biobank resource with deep phenotyping and genomic data," Nature, Nature, vol. 562(7726), pages 203-209, October.
    7. Junyang Qian & Yosuke Tanigawa & Wenfei Du & Matthew Aguirre & Chris Chang & Robert Tibshirani & Manuel A Rivas & Trevor Hastie, 2020. "A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression with application to the UK Biobank," PLOS Genetics, Public Library of Science, vol. 16(10), pages 1-30, October.
    8. John G. Cragg & Russell S. Uhler, 1970. "The Demand for Automobiles," Canadian Journal of Economics, Canadian Economics Association, vol. 3(3), pages 386-406, August.
    9. Yosuke Tanigawa & Junyang Qian & Guhan Venkataraman & Johanne Marie Justesen & Ruilin Li & Robert Tibshirani & Trevor Hastie & Manuel A Rivas, 2022. "Significant sparse polygenic risk scores across 813 traits in UK Biobank," PLOS Genetics, Public Library of Science, vol. 18(3), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yosuke Tanigawa & Junyang Qian & Guhan Venkataraman & Johanne Marie Justesen & Ruilin Li & Robert Tibshirani & Trevor Hastie & Manuel A Rivas, 2022. "Significant sparse polygenic risk scores across 813 traits in UK Biobank," PLOS Genetics, Public Library of Science, vol. 18(3), pages 1-21, March.
    2. Carla Márquez-Luna & Steven Gazal & Po-Ru Loh & Samuel S. Kim & Nicholas Furlotte & Adam Auton & Alkes L. Price, 2021. "Incorporating functional priors improves polygenic prediction accuracy in UK Biobank and 23andMe data sets," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Junyang Qian & Yosuke Tanigawa & Wenfei Du & Matthew Aguirre & Chris Chang & Robert Tibshirani & Manuel A Rivas & Trevor Hastie, 2020. "A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression with application to the UK Biobank," PLOS Genetics, Public Library of Science, vol. 16(10), pages 1-30, October.
    4. Wei Jiang & Ling Chen & Matthew J. Girgenti & Hongyu Zhao, 2024. "Tuning parameters for polygenic risk score methods using GWAS summary statistics from training data," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Zhen Qiao & Julia Sidorenko & Joana A. Revez & Angli Xue & Xueling Lu & Katri Pärna & Harold Snieder & Peter M. Visscher & Naomi R. Wray & Loic Yengo, 2023. "Estimation and implications of the genetic architecture of fasting and non-fasting blood glucose," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Ruoyu Tian & Tian Ge & Hyeokmoon Kweon & Daniel B. Rocha & Max Lam & Jimmy Z. Liu & Kritika Singh & Daniel F. Levey & Joel Gelernter & Murray B. Stein & Ellen A. Tsai & Hailiang Huang & Christopher F., 2024. "Whole-exome sequencing in UK Biobank reveals rare genetic architecture for depression," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. James P. Pirruccello & Paolo Achille & Seung Hoan Choi & Joel T. Rämö & Shaan Khurshid & Mahan Nekoui & Sean J. Jurgens & Victor Nauffal & Shinwan Kany & Kenney Ng & Samuel F. Friedman & Puneet Batra , 2024. "Deep learning of left atrial structure and function provides link to atrial fibrillation risk," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Bingxin Zhao & Yujue Li & Zirui Fan & Zhenyi Wu & Juan Shu & Xiaochen Yang & Yilin Yang & Xifeng Wang & Bingxuan Li & Xiyao Wang & Carlos Copana & Yue Yang & Jinjie Lin & Yun Li & Jason L. Stein & Joa, 2024. "Eye-brain connections revealed by multimodal retinal and brain imaging genetics," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    9. Magdalena Zimoń & Yunfeng Huang & Anthi Trasta & Aliaksandr Halavatyi & Jimmy Z. Liu & Chia-Yen Chen & Peter Blattmann & Bernd Klaus & Christopher D. Whelan & David Sexton & Sally John & Wolfgang Hube, 2021. "Pairwise effects between lipid GWAS genes modulate lipid plasma levels and cellular uptake," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    10. Song Zhai & Hong Zhang & Devan V. Mehrotra & Judong Shen, 2022. "Pharmacogenomics polygenic risk score for drug response prediction using PRS-PGx methods," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Wenhan Chen & Yang Wu & Zhili Zheng & Ting Qi & Peter M. Visscher & Zhihong Zhu & Jian Yang, 2021. "Improved analyses of GWAS summary statistics by reducing data heterogeneity and errors," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    12. Geyu Zhou & Hongyu Zhao, 2021. "A fast and robust Bayesian nonparametric method for prediction of complex traits using summary statistics," PLOS Genetics, Public Library of Science, vol. 17(7), pages 1-17, July.
    13. Parsa Akbari & Olukayode A. Sosina & Jonas Bovijn & Karl Landheer & Jonas B. Nielsen & Minhee Kim & Senem Aykul & Tanima De & Mary E. Haas & George Hindy & Nan Lin & Ian R. Dinsmore & Jonathan Z. Luo , 2022. "Multiancestry exome sequencing reveals INHBE mutations associated with favorable fat distribution and protection from diabetes," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    14. Injeong Shim & Hiroyuki Kuwahara & NingNing Chen & Mais O. Hashem & Lama AlAbdi & Mohamed Abouelhoda & Hong-Hee Won & Pradeep Natarajan & Patrick T. Ellinor & Amit V. Khera & Xin Gao & Fowzan S. Alkur, 2023. "Clinical utility of polygenic scores for cardiometabolic disease in Arabs," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Pingting Ying & Can Chen & Zequn Lu & Shuoni Chen & Ming Zhang & Yimin Cai & Fuwei Zhang & Jinyu Huang & Linyun Fan & Caibo Ning & Yanmin Li & Wenzhuo Wang & Hui Geng & Yizhuo Liu & Wen Tian & Zhiyong, 2023. "Genome-wide enhancer-gene regulatory maps link causal variants to target genes underlying human cancer risk," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    16. Young Jin Kim & Sanghoon Moon & Mi Yeong Hwang & Sohee Han & Hye-Mi Jang & Jinhwa Kong & Dong Mun Shin & Kyungheon Yoon & Sung Min Kim & Jong-Eun Lee & Anubha Mahajan & Hyun-Young Park & Mark I. McCar, 2022. "The contribution of common and rare genetic variants to variation in metabolic traits in 288,137 East Asians," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Chachrit Khunsriraksakul & Qinmengge Li & Havell Markus & Matthew T. Patrick & Renan Sauteraud & Daniel McGuire & Xingyan Wang & Chen Wang & Lida Wang & Siyuan Chen & Ganesh Shenoy & Bingshan Li & Xue, 2023. "Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    18. Chamlee Cho & Beomsu Kim & Dan Say Kim & Mi Yeong Hwang & Injeong Shim & Minku Song & Yeong Chan Lee & Sang-Hyuk Jung & Sung Kweon Cho & Woong-Yang Park & Woojae Myung & Bong-Jo Kim & Ron Do & Hyon K., 2024. "Large-scale cross-ancestry genome-wide meta-analysis of serum urate," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    19. Kenichi Yamamoto & Kyuto Sonehara & Shinichi Namba & Takahiro Konuma & Hironori Masuko & Satoru Miyawaki & Yoichiro Kamatani & Nobuyuki Hizawa & Keiichi Ozono & Loic Yengo & Yukinori Okada, 2023. "Genetic footprints of assortative mating in the Japanese population," Nature Human Behaviour, Nature, vol. 7(1), pages 65-73, January.
    20. Andras Gezsi & Sandra Auwera & Hannu Mäkinen & Nora Eszlari & Gabor Hullam & Tamas Nagy & Sarah Bonk & Rubèn González-Colom & Xenia Gonda & Linda Garvert & Teemu Paajanen & Zsofia Gal & Kevin Kirchner, 2024. "Unique genetic and risk-factor profiles in clusters of major depressive disorder-related multimorbidity trajectories," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48654-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.