IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v131y2014icp149-162.html
   My bibliography  Save this article

Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework

Author

Listed:
  • Hannart, Alexis
  • Naveau, Philippe

Abstract

In this paper, we describe and study a class of linear shrinkage estimators of the covariance matrix that is well-suited for high dimensional matrices, has a rather wide domain of applicability, and is rooted into the Gaussian conjugate framework of Chen (1979). We propose here a new look at this framework. The linear shrinkage estimator is thereby obtained as the posterior mean of the covariance, using a Bayesian Gaussian model with conjugate inverse Wishart prior, and deriving the shrinkage intensity and target matrix by marginal likelihood maximization. We introduce some extensions to the seminal approach by deriving a closed-form expression of the marginal likelihood as well as computationally light schemes for its maximization. Further, these developments are implemented in a variety of situations and include a simulation-based performance comparison with a recent, widely used class of linear shrinkage estimators. The Gaussian conjugate estimators are found to outperform these estimators in every tested situation where the latter are available and to be more widely and directly applicable.

Suggested Citation

  • Hannart, Alexis & Naveau, Philippe, 2014. "Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 149-162.
  • Handle: RePEc:eee:jmvana:v:131:y:2014:i:c:p:149-162
    DOI: 10.1016/j.jmva.2014.06.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X14001316
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2014.06.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. William F. Sharpe, 1963. "A Simplified Model for Portfolio Analysis," Management Science, INFORMS, vol. 9(2), pages 277-293, January.
    3. Michael J. Daniels & Robert E. Kass, 2001. "Shrinkage Estimators for Covariance Matrices," Biometrics, The International Biometric Society, vol. 57(4), pages 1173-1184, December.
    4. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    5. Chen, Song Xi & Zhang, Li-Xin & Zhong, Ping-Shou, 2010. "Tests for High-Dimensional Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 810-819.
    6. Schäfer Juliane & Strimmer Korbinian, 2005. "A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-32, November.
    7. Joong-Ho Won & Johan Lim & Seung-Jean Kim & Bala Rajaratnam, 2013. "Condition-number-regularized covariance estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 427-450, June.
    8. Chih-Wen Hsu & Marick Sinay & John Hsu, 2012. "Bayesian estimation of a covariance matrix with flexible prior specification," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(2), pages 319-342, April.
    9. Jushan Bai & Shuzhong Shi, 2011. "Estimating High Dimensional Covariance Matrices and its Applications," Annals of Economics and Finance, Society for AEF, vol. 12(2), pages 199-215, November.
    10. Qiu, Yumou & Chen, Songxi, 2012. "Test for Bandedness of High Dimensional Covariance Matrices with Bandwidth Estimation," MPRA Paper 46242, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van Wieringen, Wessel N. & Stam, Koen A. & Peeters, Carel F.W. & van de Wiel, Mark A., 2020. "Updating of the Gaussian graphical model through targeted penalized estimation," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    2. Ikeda, Yuki & Kubokawa, Tatsuya & Srivastava, Muni S., 2016. "Comparison of linear shrinkage estimators of a large covariance matrix in normal and non-normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 95-108.
    3. Ruili Sun & Tiefeng Ma & Shuangzhe Liu, 2018. "A Stein-type shrinkage estimator of the covariance matrix for portfolio selections," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(8), pages 931-952, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ikeda, Yuki & Kubokawa, Tatsuya & Srivastava, Muni S., 2016. "Comparison of linear shrinkage estimators of a large covariance matrix in normal and non-normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 95-108.
    2. Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019. "A multiple testing approach to the regularisation of large sample correlation matrices," Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
    3. Yuki Ikeda & Tatsuya Kubokawa & Muni S. Srivastava, 2015. "Comparison of Linear Shrinkage Estimators of a Large Covariance Matrix in Normal and Non-normal Distributions," CIRJE F-Series CIRJE-F-970, CIRJE, Faculty of Economics, University of Tokyo.
    4. van Wieringen, Wessel N. & Peeters, Carel F.W., 2016. "Ridge estimation of inverse covariance matrices from high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 284-303.
    5. Tatsuya Kubokawa & Muni S. Srivastava, 2013. "Optimal Ridge-type Estimators of Covariance Matrix in High Dimension," CIRJE F-Series CIRJE-F-906, CIRJE, Faculty of Economics, University of Tokyo.
    6. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
    7. Brett Naul & Bala Rajaratnam & Dario Vincenzi, 2016. "The role of the isotonizing algorithm in Stein’s covariance matrix estimator," Computational Statistics, Springer, vol. 31(4), pages 1453-1476, December.
    8. Ruili Sun & Tiefeng Ma & Shuangzhe Liu, 2020. "Portfolio selection: shrinking the time-varying inverse conditional covariance matrix," Statistical Papers, Springer, vol. 61(6), pages 2583-2604, December.
    9. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    10. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    11. Kwon, Yongchan & Choi, Young-Geun & Park, Taesung & Ziegler, Andreas & Paik, Myunghee Cho, 2017. "Generalized estimating equations with stabilized working correlation structure," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 1-11.
    12. Carel F. W. Peeters & Mark A. Wiel & Wessel N. Wieringen, 2020. "The spectral condition number plot for regularization parameter evaluation," Computational Statistics, Springer, vol. 35(2), pages 629-646, June.
    13. Ruili Sun & Tiefeng Ma & Shuangzhe Liu, 2018. "A Stein-type shrinkage estimator of the covariance matrix for portfolio selections," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(8), pages 931-952, November.
    14. Gillen, Benjamin J., 2014. "An empirical Bayesian approach to stein-optimal covariance matrix estimation," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 402-420.
    15. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    16. Viet Anh Nguyen & Daniel Kuhn & Peyman Mohajerin Esfahani, 2018. "Distributionally Robust Inverse Covariance Estimation: The Wasserstein Shrinkage Estimator," Papers 1805.07194, arXiv.org.
    17. Ledoit, Olivier & Wolf, Michael, 2017. "Numerical implementation of the QuEST function," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 199-223.
    18. Hafner, Christian M. & Reznikova, Olga, 2012. "On the estimation of dynamic conditional correlation models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3533-3545.
    19. Nhat Minh Nguyen & Trung Duc Nguyen & Eleftherios I. Thalassinos & Hoang Anh Le, 2022. "The Performance of Shrinkage Estimator for Stock Portfolio Selection in Case of High Dimensionality," JRFM, MDPI, vol. 15(6), pages 1-12, June.
    20. Gautam Sabnis & Debdeep Pati & Anirban Bhattacharya, 2019. "Compressed Covariance Estimation with Automated Dimension Learning," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 466-481, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:131:y:2014:i:c:p:149-162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.