IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1009141.html
   My bibliography  Save this article

A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression with application to the UK Biobank

Author

Listed:
  • Junyang Qian
  • Yosuke Tanigawa
  • Wenfei Du
  • Matthew Aguirre
  • Chris Chang
  • Robert Tibshirani
  • Manuel A Rivas
  • Trevor Hastie

Abstract

The UK Biobank is a very large, prospective population-based cohort study across the United Kingdom. It provides unprecedented opportunities for researchers to investigate the relationship between genotypic information and phenotypes of interest. Multiple regression methods, compared with genome-wide association studies (GWAS), have already been showed to greatly improve the prediction performance for a variety of phenotypes. In the high-dimensional settings, the lasso, since its first proposal in statistics, has been proved to be an effective method for simultaneous variable selection and estimation. However, the large-scale and ultrahigh dimension seen in the UK Biobank pose new challenges for applying the lasso method, as many existing algorithms and their implementations are not scalable to large applications. In this paper, we propose a computational framework called batch screening iterative lasso (BASIL) that can take advantage of any existing lasso solver and easily build a scalable solution for very large data, including those that are larger than the memory size. We introduce snpnet, an R package that implements the proposed algorithm on top of glmnet and optimizes for single nucleotide polymorphism (SNP) datasets. It currently supports ℓ1-penalized linear model, logistic regression, Cox model, and also extends to the elastic net with ℓ1/ℓ2 penalty. We demonstrate results on the UK Biobank dataset, where we achieve competitive predictive performance for all four phenotypes considered (height, body mass index, asthma, high cholesterol) using only a small fraction of the variants compared with other established polygenic risk score methods.Author summary: With the advent and evolution of large-scale and comprehensive biobanks, there come up unprecedented opportunities for researchers to further uncover the complex landscape of human genetics. One major direction that attracts long-standing interest is the investigation of the relationships between genotypes and phenotypes. This includes but doesn’t limit to the identification of genotypes that are significantly associated with the phenotypes, and the prediction of phenotypic values based on the genotypic information. Genome-wide association studies (GWAS) is a very powerful and widely used framework for the former task, having produced a number of very impactful discoveries. However, when it comes to the latter, its performance is fairly limited by the univariate nature. To address this, multiple regression methods have been suggested to fill in the gap. That said, challenges emerge as the dimension and the size of datasets both become large nowadays. In this paper, we present a novel computational framework that enables us to solve efficiently the entire lasso or elastic-net solution path on large-scale and ultrahigh-dimensional data, and therefore make simultaneous variable selection and prediction. Our approach can build on any existing lasso solver for small or moderate-sized problems, scale it up to a big-data solution, and incorporate other extensions easily. We provide a package snpnet that extends the glmnet package in R and optimizes for large phenotype-genotype data. On the UK Biobank, we observe competitive prediction performance of the lasso and the elastic-net for all four phenotypes considered from the UK Biobank. That said, the scope of our approach goes beyond genetic studies. It can be applied to general sparse regression problems and build scalable solution for a variety of distribution families based on existing solvers.

Suggested Citation

  • Junyang Qian & Yosuke Tanigawa & Wenfei Du & Matthew Aguirre & Chris Chang & Robert Tibshirani & Manuel A Rivas & Trevor Hastie, 2020. "A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression with application to the UK Biobank," PLOS Genetics, Public Library of Science, vol. 16(10), pages 1-30, October.
  • Handle: RePEc:plo:pgen00:1009141
    DOI: 10.1371/journal.pgen.1009141
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1009141
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1009141&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1009141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tian Ge & Chia-Yen Chen & Yang Ni & Yen-Chen Anne Feng & Jordan W. Smoller, 2019. "Polygenic prediction via Bayesian regression and continuous shrinkage priors," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Nick Patterson & Alkes L Price & David Reich, 2006. "Population Structure and Eigenanalysis," PLOS Genetics, Public Library of Science, vol. 2(12), pages 1-20, December.
    3. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    4. Clare Bycroft & Colin Freeman & Desislava Petkova & Gavin Band & Lloyd T. Elliott & Kevin Sharp & Allan Motyer & Damjan Vukcevic & Olivier Delaneau & Jared O’Connell & Adrian Cortes & Samantha Welsh &, 2018. "The UK Biobank resource with deep phenotyping and genomic data," Nature, Nature, vol. 562(7726), pages 203-209, October.
    5. Kane, Michael & Emerson, John W. & Weston, Stephen, 2013. "Scalable Strategies for Computing with Massive Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i14).
    6. Luke R. Lloyd-Jones & Jian Zeng & Julia Sidorenko & Loïc Yengo & Gerhard Moser & Kathryn E. Kemper & Huanwei Wang & Zhili Zheng & Reedik Magi & Tõnu Esko & Andres Metspalu & Naomi R. Wray & Michael E., 2019. "Improved polygenic prediction by Bayesian multiple regression on summary statistics," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    7. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    8. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    9. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brieuc Lehmann & Maxine Mackintosh & Gil McVean & Chris Holmes, 2023. "Optimal strategies for learning multi-ancestry polygenic scores vary across traits," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. The Tien Mai, 2023. "Reliable Genetic Correlation Estimation via Multiple Sample Splitting and Smoothing," Mathematics, MDPI, vol. 11(9), pages 1-13, May.
    3. Rikifumi Ohta & Yosuke Tanigawa & Yuta Suzuki & Manolis Kellis & Shinichi Morishita, 2024. "A polygenic score method boosted by non-additive models," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Yosuke Tanigawa & Junyang Qian & Guhan Venkataraman & Johanne Marie Justesen & Ruilin Li & Robert Tibshirani & Trevor Hastie & Manuel A Rivas, 2022. "Significant sparse polygenic risk scores across 813 traits in UK Biobank," PLOS Genetics, Public Library of Science, vol. 18(3), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zichen Zhang & Ye Eun Bae & Jonathan R. Bradley & Lang Wu & Chong Wu, 2022. "SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    3. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    4. Jingxuan Luo & Lili Yue & Gaorong Li, 2023. "Overview of High-Dimensional Measurement Error Regression Models," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
    5. Zeng, Yaohui & Yang, Tianbao & Breheny, Patrick, 2021. "Hybrid safe–strong rules for efficient optimization in lasso-type problems," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    6. Kimia Keshanian & Daniel Zantedeschi & Kaushik Dutta, 2022. "Features Selection as a Nash-Bargaining Solution: Applications in Online Advertising and Information Systems," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2485-2501, September.
    7. Zakariya Yahya Algamal & Muhammad Hisyam Lee, 2019. "A two-stage sparse logistic regression for optimal gene selection in high-dimensional microarray data classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 753-771, September.
    8. Soyeon Kim & Veerabhadran Baladandayuthapani & J. Jack Lee, 2017. "Prediction-Oriented Marker Selection (PROMISE): With Application to High-Dimensional Regression," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 217-245, June.
    9. Dai, Linlin & Chen, Kani & Sun, Zhihua & Liu, Zhenqiu & Li, Gang, 2018. "Broken adaptive ridge regression and its asymptotic properties," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 334-351.
    10. Armin Rauschenberger & Iuliana Ciocănea-Teodorescu & Marianne A. Jonker & Renée X. Menezes & Mark A. Wiel, 2020. "Sparse classification with paired covariates," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(3), pages 571-588, September.
    11. Yosuke Tanigawa & Junyang Qian & Guhan Venkataraman & Johanne Marie Justesen & Ruilin Li & Robert Tibshirani & Trevor Hastie & Manuel A Rivas, 2022. "Significant sparse polygenic risk scores across 813 traits in UK Biobank," PLOS Genetics, Public Library of Science, vol. 18(3), pages 1-21, March.
    12. Bai, Ray & Ghosh, Malay, 2018. "High-dimensional multivariate posterior consistency under global–local shrinkage priors," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 157-170.
    13. Paweł Teisseyre & Robert A. Kłopotek & Jan Mielniczuk, 2016. "Random Subspace Method for high-dimensional regression with the R package regRSM," Computational Statistics, Springer, vol. 31(3), pages 943-972, September.
    14. She, Yiyuan, 2012. "An iterative algorithm for fitting nonconvex penalized generalized linear models with grouped predictors," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2976-2990.
    15. Fan, Jianqing & Ke, Yuan & Wang, Kaizheng, 2020. "Factor-adjusted regularized model selection," Journal of Econometrics, Elsevier, vol. 216(1), pages 71-85.
    16. Zhihua Sun & Yi Liu & Kani Chen & Gang Li, 2022. "Broken adaptive ridge regression for right-censored survival data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 69-91, February.
    17. Jian Huang & Yuling Jiao & Lican Kang & Jin Liu & Yanyan Liu & Xiliang Lu, 2022. "GSDAR: a fast Newton algorithm for $$\ell _0$$ ℓ 0 regularized generalized linear models with statistical guarantee," Computational Statistics, Springer, vol. 37(1), pages 507-533, March.
    18. Niloy Biswas & Anirban Bhattacharya & Pierre E. Jacob & James E. Johndrow, 2022. "Coupling‐based convergence assessment of some Gibbs samplers for high‐dimensional Bayesian regression with shrinkage priors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 973-996, July.
    19. Bingxin Zhao & Fei Zou & Hongtu Zhu, 2023. "Cross‐trait prediction accuracy of summary statistics in genome‐wide association studies," Biometrics, The International Biometric Society, vol. 79(2), pages 841-853, June.
    20. Abhijeet R Patil & Sangjin Kim, 2020. "Combination of Ensembles of Regularized Regression Models with Resampling-Based Lasso Feature Selection in High Dimensional Data," Mathematics, MDPI, vol. 8(1), pages 1-23, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1009141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.