IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/10087.html
   My bibliography  Save this paper

A well conditioned estimator for large dimensional covariance matrices

Author

Listed:
  • Ledoit, Olivier
  • Wolf, Michael

Abstract

Many economic problems require a covariance matrix estimator that is not only invertible, but also well-conditioned (that is, inverting it does not amplify estimation error). For largedimensional covariance matrices, the usual estimator -the sample covariance matrix- is typically not well-conditioned and may not even be invertible. This paper introduces an estimator that is both well-conditioned and more accurate than the sample covariance matrix asymptotically. This estimator is distribution-free and has a simple explicit formula that is easy to compute and interpret. It is the asymptotically optimal convex linear combination of the sample covariance matrix with the identity matrix. Optimality is meant with respect to a quadratic loss function, asymptotically as the number of observations and the number of variables go to infinity together. Extensive Monte-Carlo confirm that the asymptotic results tend to hold well in finite sample.

Suggested Citation

  • Ledoit, Olivier & Wolf, Michael, 2000. "A well conditioned estimator for large dimensional covariance matrices," DES - Working Papers. Statistics and Econometrics. WS 10087, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:10087
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/6a5025a0-8c3a-4715-8d4d-3054ed1fdeab/content
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    3. Silverstein, J. W., 1995. "Strong Convergence of the Empirical Distribution of Eigenvalues of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 331-339, November.
    4. Frost, Peter A. & Savarino, James E., 1986. "An Empirical Bayes Approach to Efficient Portfolio Selection," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 293-305, September.
    5. Vinod, H. D., 1982. "Maximum entropy measurement error estimates of singular covariance matrices in undersized samples," Journal of Econometrics, Elsevier, vol. 20(2), pages 163-174, November.
    6. Crack, Timothy Falcon & Ledoit, Olivier, 1996. "Robust Structure without Predictability: The "Compass Rose" Pattern of the Stock Market," Journal of Finance, American Finance Association, vol. 51(2), pages 751-762, June.
    7. Yin, Y. Q., 1986. "Limiting spectral distribution for a class of random matrices," Journal of Multivariate Analysis, Elsevier, vol. 20(1), pages 50-68, October.
    8. Kandel, Shmuel & Stambaugh, Robert F, 1995. "Portfolio Inefficiency and the Cross-Section of Expected Returns," Journal of Finance, American Finance Association, vol. 50(1), pages 157-184, March.
    9. repec:bla:jfinan:v:44:y:1989:i:5:p:1247-62 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joel Bun & Jean-Philippe Bouchaud & Marc Potters, 2016. "Cleaning large correlation matrices: tools from random matrix theory," Papers 1610.08104, arXiv.org.
    2. Robert F. Engle & Olivier Ledoit & Michael Wolf, 2019. "Large Dynamic Covariance Matrices," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 363-375, April.
    3. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    4. Ando, Tomohiro, 2009. "Bayesian portfolio selection using a multifactor model," International Journal of Forecasting, Elsevier, vol. 25(3), pages 550-566, July.
    5. Bodnar, Taras & Gupta, Arjun K. & Parolya, Nestor, 2016. "Direct shrinkage estimation of large dimensional precision matrix," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 223-236.
    6. Michael W. Brandt & Pedro Santa-Clara & Rossen Valkanov, 2009. "Parametric Portfolio Policies: Exploiting Characteristics in the Cross-Section of Equity Returns," The Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3411-3447, September.
    7. Fletcher, Jonathan, 2011. "Do optimal diversification strategies outperform the 1/N strategy in U.K. stock returns?," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 375-385.
    8. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2018. "Estimation of the global minimum variance portfolio in high dimensions," European Journal of Operational Research, Elsevier, vol. 266(1), pages 371-390.
    9. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    10. Peñaranda, Francisco & Sentana, Enrique, 2012. "Spanning tests in return and stochastic discount factor mean–variance frontiers: A unifying approach," Journal of Econometrics, Elsevier, vol. 170(2), pages 303-324.
    11. Amengual, Dante & Sentana, Enrique, 2010. "A comparison of mean-variance efficiency tests," Journal of Econometrics, Elsevier, vol. 154(1), pages 16-34, January.
    12. Qi Shi & Bin Li & Adrian (Wai Kong) Cheung & Richard Chung, 2017. "Augmenting the intertemporal CAPM with inflation: Further evidence from alternative models," Australian Journal of Management, Australian School of Business, vol. 42(4), pages 653-672, November.
    13. Pan, Guangming, 2010. "Strong convergence of the empirical distribution of eigenvalues of sample covariance matrices with a perturbation matrix," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1330-1338, July.
    14. Gourieroux, C. & Monfort, A., 2005. "The econometrics of efficient portfolios," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 1-41, January.
    15. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    16. Thomas J. Brennan & Andrew W. Lo, 2010. "Impossible Frontiers," Management Science, INFORMS, vol. 56(6), pages 905-923, June.
    17. Walsh, David M. & Walsh, Kathleen D. & Evans, John P., 1998. "Assessing estimation error in a tracking error variance minimisation framework," Pacific-Basin Finance Journal, Elsevier, vol. 6(1-2), pages 175-192, May.
    18. Stambaugh, Robert F., 1997. "Analyzing investments whose histories differ in length," Journal of Financial Economics, Elsevier, vol. 45(3), pages 285-331, September.
    19. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    20. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.

    More about this item

    Keywords

    Covariance matrix estimation;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:10087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.