IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36306-5.html
   My bibliography  Save this article

Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus

Author

Listed:
  • Chachrit Khunsriraksakul

    (Pennsylvania State University College of Medicine
    Pennsylvania State University College of Medicine)

  • Qinmengge Li

    (University of Michigan Medical School)

  • Havell Markus

    (Pennsylvania State University College of Medicine
    Pennsylvania State University College of Medicine)

  • Matthew T. Patrick

    (University of Michigan Medical School)

  • Renan Sauteraud

    (Pennsylvania State University College of Medicine)

  • Daniel McGuire

    (Pennsylvania State University College of Medicine)

  • Xingyan Wang

    (Pennsylvania State University College of Medicine)

  • Chen Wang

    (Pennsylvania State University College of Medicine)

  • Lida Wang

    (Pennsylvania State University College of Medicine)

  • Siyuan Chen

    (Pennsylvania State University College of Medicine)

  • Ganesh Shenoy

    (Pennsylvania State University College of Medicine)

  • Bingshan Li

    (Vanderbilt University)

  • Xue Zhong

    (Vanderbilt University Medical Center)

  • Nancy J. Olsen

    (Pennsylvania State University College of Medicine)

  • Laura Carrel

    (Pennsylvania State University College of Medicine)

  • Lam C. Tsoi

    (University of Michigan Medical School)

  • Bibo Jiang

    (Pennsylvania State University College of Medicine)

  • Dajiang J. Liu

    (Pennsylvania State University College of Medicine
    Pennsylvania State University College of Medicine
    Pennsylvania State University College of Medicine)

Abstract

Systemic lupus erythematosus is a heritable autoimmune disease that predominantly affects young women. To improve our understanding of genetic etiology, we conduct multi-ancestry and multi-trait meta-analysis of genome-wide association studies, encompassing 12 systemic lupus erythematosus cohorts from 3 different ancestries and 10 genetically correlated autoimmune diseases, and identify 16 novel loci. We also perform transcriptome-wide association studies, computational drug repurposing analysis, and cell type enrichment analysis. We discover putative drug classes, including a histone deacetylase inhibitor that could be repurposed to treat lupus. We also identify multiple cell types enriched with putative target genes, such as non-classical monocytes and B cells, which may be targeted for future therapeutics. Using this newly assembled result, we further construct polygenic risk score models and demonstrate that integrating polygenic risk score with clinical lab biomarkers improves the diagnostic accuracy of systemic lupus erythematosus using the Vanderbilt BioVU and Michigan Genomics Initiative biobanks.

Suggested Citation

  • Chachrit Khunsriraksakul & Qinmengge Li & Havell Markus & Matthew T. Patrick & Renan Sauteraud & Daniel McGuire & Xingyan Wang & Chen Wang & Lida Wang & Siyuan Chen & Ganesh Shenoy & Bingshan Li & Xue, 2023. "Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36306-5
    DOI: 10.1038/s41467-023-36306-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36306-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36306-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tian Ge & Chia-Yen Chen & Yang Ni & Yen-Chen Anne Feng & Jordan W. Smoller, 2019. "Polygenic prediction via Bayesian regression and continuous shrinkage priors," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Joshua Chiou & Ryan J. Geusz & Mei-Lin Okino & Jee Yun Han & Michael Miller & Rebecca Melton & Elisha Beebe & Paola Benaglio & Serina Huang & Katha Korgaonkar & Sandra Heller & Alexander Kleger & Seba, 2021. "Interpreting type 1 diabetes risk with genetics and single-cell epigenomics," Nature, Nature, vol. 594(7863), pages 398-402, June.
    3. Vincent Plagnol & Joanna M M Howson & Deborah J Smyth & Neil Walker & Jason P Hafler & Chris Wallace & Helen Stevens & Laura Jackson & Matthew J Simmonds & Type 1 Diabetes Genetics Consortium & Polly , 2011. "Genome-Wide Association Analysis of Autoantibody Positivity in Type 1 Diabetes Cases," PLOS Genetics, Public Library of Science, vol. 7(8), pages 1-9, August.
    4. Chachrit Khunsriraksakul & Daniel McGuire & Renan Sauteraud & Fang Chen & Lina Yang & Lida Wang & Jordan Hughey & Scott Eckert & J. Dylan Weissenkampen & Ganesh Shenoy & Olivia Marx & Laura Carrel & B, 2022. "Integrating 3D genomic and epigenomic data to enhance target gene discovery and drug repurposing in transcriptome-wide association studies," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Luke R. Lloyd-Jones & Jian Zeng & Julia Sidorenko & Loïc Yengo & Gerhard Moser & Kathryn E. Kemper & Huanwei Wang & Zhili Zheng & Reedik Magi & Tõnu Esko & Andres Metspalu & Naomi R. Wray & Michael E., 2019. "Improved polygenic prediction by Bayesian multiple regression on summary statistics," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    6. Yong-Fei Wang & Yan Zhang & Zhiming Lin & Huoru Zhang & Ting-You Wang & Yujie Cao & David L. Morris & Yujun Sheng & Xianyong Yin & Shi-Long Zhong & Xiaoqiong Gu & Yao Lei & Jing He & Qi Wu & Jiangshan, 2021. "Identification of 38 novel loci for systemic lupus erythematosus and genetic heterogeneity between ancestral groups," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    7. Heather J. Cordell & Younghun Han & George F. Mells & Yafang Li & Gideon M. Hirschfield & Casey S. Greene & Gang Xie & Brian D. Juran & Dakai Zhu & David C. Qian & James A. B. Floyd & Katherine I. Mor, 2015. "International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways," Nature Communications, Nature, vol. 6(1), pages 1-11, November.
    8. Nina Mars & Elisabeth Widén & Sini Kerminen & Tuomo Meretoja & Matti Pirinen & Pietro della Briotta Parolo & Priit Palta & Aarno Palotie & Jaakko Kaprio & Heikki Joensuu & Mark Daly & Samuli Ripatti, 2020. "The role of polygenic risk and susceptibility genes in breast cancer over the course of life," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    9. Xiaoming Lu & Xiaoting Chen & Carmy Forney & Omer Donmez & Daniel Miller & Sreeja Parameswaran & Ted Hong & Yongbo Huang & Mario Pujato & Tareian Cazares & Emily R. Miraldi & John P. Ray & Carl G. Boe, 2021. "Global discovery of lupus genetic risk variant allelic enhancer activity," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    10. Christiaan A de Leeuw & Joris M Mooij & Tom Heskes & Danielle Posthuma, 2015. "MAGMA: Generalized Gene-Set Analysis of GWAS Data," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-19, April.
    11. Geyu Zhou & Hongyu Zhao, 2021. "A fast and robust Bayesian nonparametric method for prediction of complex traits using summary statistics," PLOS Genetics, Public Library of Science, vol. 17(7), pages 1-17, July.
    12. Tuuli Lappalainen & Michael Sammeth & Marc R. Friedländer & Peter A. C. ‘t Hoen & Jean Monlong & Manuel A. Rivas & Mar Gonzàlez-Porta & Natalja Kurbatova & Thasso Griebel & Pedro G. Ferreira & Matthia, 2013. "Transcriptome and genome sequencing uncovers functional variation in humans," Nature, Nature, vol. 501(7468), pages 506-511, September.
    13. Carl D. Langefeld & Hannah C. Ainsworth & Deborah S. Cunninghame Graham & Jennifer A. Kelly & Mary E. Comeau & Miranda C. Marion & Timothy D. Howard & Paula S. Ramos & Jennifer A. Croker & David L. Mo, 2017. "Transancestral mapping and genetic load in systemic lupus erythematosus," Nature Communications, Nature, vol. 8(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuki Ishikawa & Nao Tanaka & Yoshihide Asano & Masanari Kodera & Yuichiro Shirai & Mitsuteru Akahoshi & Minoru Hasegawa & Takashi Matsushita & Kazuyoshi Saito & Sei-ichiro Motegi & Hajime Yoshifuji & , 2024. "GWAS for systemic sclerosis identifies six novel susceptibility loci including one in the Fcγ receptor region," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lida Wang & Chachrit Khunsriraksakul & Havell Markus & Dieyi Chen & Fan Zhang & Fang Chen & Xiaowei Zhan & Laura Carrel & Dajiang. J. Liu & Bibo Jiang, 2024. "Integrating single cell expression quantitative trait loci summary statistics to understand complex trait risk genes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Qiang Wang & Taehyeung Kim & Marta Martínez-Bonet & Vitor R. C. Aguiar & Sangwan Sim & Jing Cui & Jeffrey A. Sparks & Xiaoting Chen & Marc Todd & Brian Wauford & Miranda C. Marion & Carl D. Langefeld , 2024. "High-throughput identification of functional regulatory SNPs in systemic lupus erythematosus," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Clara Albiñana & Zhihong Zhu & Andrew J. Schork & Andrés Ingason & Hugues Aschard & Isabell Brikell & Cynthia M. Bulik & Liselotte V. Petersen & Esben Agerbo & Jakob Grove & Merete Nordentoft & David , 2023. "Multi-PGS enhances polygenic prediction by combining 937 polygenic scores," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Wei Jiang & Ling Chen & Matthew J. Girgenti & Hongyu Zhao, 2024. "Tuning parameters for polygenic risk score methods using GWAS summary statistics from training data," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Tian Zhou & Xinyi Zhu & Zhizhong Ye & Yong-Fei Wang & Chao Yao & Ning Xu & Mi Zhou & Jianyang Ma & Yuting Qin & Yiwei Shen & Yuanjia Tang & Zhihua Yin & Hong Xu & Yutong Zhang & Xiaoli Zang & Huihua D, 2022. "Lupus enhancer risk variant causes dysregulation of IRF8 through cooperative lncRNA and DNA methylation machinery," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Song Zhai & Hong Zhang & Devan V. Mehrotra & Judong Shen, 2022. "Pharmacogenomics polygenic risk score for drug response prediction using PRS-PGx methods," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Rikifumi Ohta & Yosuke Tanigawa & Yuta Suzuki & Manolis Kellis & Shinichi Morishita, 2024. "A polygenic score method boosted by non-additive models," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Geyu Zhou & Hongyu Zhao, 2021. "A fast and robust Bayesian nonparametric method for prediction of complex traits using summary statistics," PLOS Genetics, Public Library of Science, vol. 17(7), pages 1-17, July.
    9. Carla Márquez-Luna & Steven Gazal & Po-Ru Loh & Samuel S. Kim & Nicholas Furlotte & Adam Auton & Alkes L. Price, 2021. "Incorporating functional priors improves polygenic prediction accuracy in UK Biobank and 23andMe data sets," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    10. Yosuke Tanigawa & Junyang Qian & Guhan Venkataraman & Johanne Marie Justesen & Ruilin Li & Robert Tibshirani & Trevor Hastie & Manuel A Rivas, 2022. "Significant sparse polygenic risk scores across 813 traits in UK Biobank," PLOS Genetics, Public Library of Science, vol. 18(3), pages 1-21, March.
    11. Yunfeng Huang & Dora Bodnar & Chia-Yen Chen & Gabriela Sanchez-Andrade & Mark Sanderson & Jun Shi & Katherine G. Meilleur & Matthew E. Hurles & Sebastian S. Gerety & Ellen A. Tsai & Heiko Runz, 2023. "Rare genetic variants impact muscle strength," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Junyang Qian & Yosuke Tanigawa & Wenfei Du & Matthew Aguirre & Chris Chang & Robert Tibshirani & Manuel A Rivas & Trevor Hastie, 2020. "A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression with application to the UK Biobank," PLOS Genetics, Public Library of Science, vol. 16(10), pages 1-30, October.
    13. Tzu-Ting Chen & Jaeyoung Kim & Max Lam & Yi-Fang Chuang & Yen-Ling Chiu & Shu-Chin Lin & Sang-Hyuk Jung & Beomsu Kim & Soyeon Kim & Chamlee Cho & Injeong Shim & Sanghyeon Park & Yeeun Ahn & Aysu Okbay, 2024. "Shared genetic architectures of educational attainment in East Asian and European populations," Nature Human Behaviour, Nature, vol. 8(3), pages 562-575, March.
    14. Andras Gezsi & Sandra Auwera & Hannu Mäkinen & Nora Eszlari & Gabor Hullam & Tamas Nagy & Sarah Bonk & Rubèn González-Colom & Xenia Gonda & Linda Garvert & Teemu Paajanen & Zsofia Gal & Kevin Kirchner, 2024. "Unique genetic and risk-factor profiles in clusters of major depressive disorder-related multimorbidity trajectories," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    15. Mingyang Li & Xixi Dang & Yiwei Chen & Zhifan Chen & Xinyi Xu & Zhiyong Zhao & Dan Wu, 2024. "Cognitive processing speed and accuracy are intrinsically different in genetic architecture and brain phenotypes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Ashley Budu-Aggrey & Anna Kilanowski & Maria K. Sobczyk & Suyash S. Shringarpure & Ruth Mitchell & Kadri Reis & Anu Reigo & Reedik Mägi & Mari Nelis & Nao Tanaka & Ben M. Brumpton & Laurent F. Thomas , 2023. "European and multi-ancestry genome-wide association meta-analysis of atopic dermatitis highlights importance of systemic immune regulation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    17. Chachrit Khunsriraksakul & Daniel McGuire & Renan Sauteraud & Fang Chen & Lina Yang & Lida Wang & Jordan Hughey & Scott Eckert & J. Dylan Weissenkampen & Ganesh Shenoy & Olivia Marx & Laura Carrel & B, 2022. "Integrating 3D genomic and epigenomic data to enhance target gene discovery and drug repurposing in transcriptome-wide association studies," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    18. Kensuke Yamaguchi & Kazuyoshi Ishigaki & Akari Suzuki & Yumi Tsuchida & Haruka Tsuchiya & Shuji Sumitomo & Yasuo Nagafuchi & Fuyuki Miya & Tatsuhiko Tsunoda & Hirofumi Shoda & Keishi Fujio & Kazuhiko , 2022. "Splicing QTL analysis focusing on coding sequences reveals mechanisms for disease susceptibility loci," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    19. Qile Dai & Geyu Zhou & Hongyu Zhao & Urmo Võsa & Lude Franke & Alexis Battle & Alexander Teumer & Terho Lehtimäki & Olli T. Raitakari & Tõnu Esko & Michael P. Epstein & Jingjing Yang, 2023. "OTTERS: a powerful TWAS framework leveraging summary-level reference data," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Maria Niarchou & Daniel E. Gustavson & J. Fah Sathirapongsasuti & Manuel Anglada-Tort & Else Eising & Eamonn Bell & Evonne McArthur & Peter Straub & J. Devin McAuley & John A. Capra & Fredrik Ullén & , 2022. "Genome-wide association study of musical beat synchronization demonstrates high polygenicity," Nature Human Behaviour, Nature, vol. 6(9), pages 1292-1309, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36306-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.