IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40330-w.html
   My bibliography  Save this article

Multi-PGS enhances polygenic prediction by combining 937 polygenic scores

Author

Listed:
  • Clara Albiñana

    (iPSYCH
    Aarhus University)

  • Zhihong Zhu

    (Aarhus University)

  • Andrew J. Schork

    (iPSYCH
    Copenhagen University Hospital
    The Translational Genomics Research Institute)

  • Andrés Ingason

    (iPSYCH
    Copenhagen University Hospital)

  • Hugues Aschard

    (Université de Paris)

  • Isabell Brikell

    (iPSYCH
    Aarhus University
    Karolinska Institute)

  • Cynthia M. Bulik

    (Karolinska Institute
    Department of Psychiatry, University of North Carolina at Chapel Hill
    Department of Nutrition, University of North Carolina at Chapel Hill)

  • Liselotte V. Petersen

    (iPSYCH
    Aarhus University)

  • Esben Agerbo

    (iPSYCH
    Aarhus University)

  • Jakob Grove

    (iPSYCH
    Aarhus University
    Aarhus University
    Aarhus University)

  • Merete Nordentoft

    (iPSYCH
    University of Copenhagen)

  • David M. Hougaard

    (iPSYCH
    Statens Serum Institut)

  • Thomas Werge

    (iPSYCH
    Copenhagen University Hospital
    University of Copenhagen)

  • Anders D. Børglum

    (iPSYCH
    Aarhus University
    Aarhus University)

  • Preben Bo Mortensen

    (iPSYCH
    Aarhus University)

  • John J. McGrath

    (Aarhus University
    The Park Centre for Mental Health
    University of Queensland)

  • Benjamin M. Neale

    (Massachusetts General Hospital
    Broad Institute of MIT and Harvard)

  • Florian Privé

    (iPSYCH
    Aarhus University)

  • Bjarni J. Vilhjálmsson

    (iPSYCH
    Aarhus University
    Aarhus University
    Broad Institute of MIT and Harvard)

Abstract

The predictive performance of polygenic scores (PGS) is largely dependent on the number of samples available to train the PGS. Increasing the sample size for a specific phenotype is expensive and takes time, but this sample size can be effectively increased by using genetically correlated phenotypes. We propose a framework to generate multi-PGS from thousands of publicly available genome-wide association studies (GWAS) with no need to individually select the most relevant ones. In this study, the multi-PGS framework increases prediction accuracy over single PGS for all included psychiatric disorders and other available outcomes, with prediction R2 increases of up to 9-fold for attention-deficit/hyperactivity disorder compared to a single PGS. We also generate multi-PGS for phenotypes without an existing GWAS and for case-case predictions. We benchmark the multi-PGS framework against other methods and highlight its potential application to new emerging biobanks.

Suggested Citation

  • Clara Albiñana & Zhihong Zhu & Andrew J. Schork & Andrés Ingason & Hugues Aschard & Isabell Brikell & Cynthia M. Bulik & Liselotte V. Petersen & Esben Agerbo & Jakob Grove & Merete Nordentoft & David , 2023. "Multi-PGS enhances polygenic prediction by combining 937 polygenic scores," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40330-w
    DOI: 10.1038/s41467-023-40330-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40330-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40330-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qianqian Zhang & Florian Privé & Bjarni Vilhjálmsson & Doug Speed, 2021. "Improved genetic prediction of complex traits from individual-level data or summary statistics," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Tian Ge & Chia-Yen Chen & Yang Ni & Yen-Chen Anne Feng & Jordan W. Smoller, 2019. "Polygenic prediction via Bayesian regression and continuous shrinkage priors," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Gad Abraham & Rainer Malik & Ekaterina Yonova-Doing & Agus Salim & Tingting Wang & John Danesh & Adam S. Butterworth & Joanna M. M. Howson & Michael Inouye & Martin Dichgans, 2019. "Genomic risk score offers predictive performance comparable to clinical risk factors for ischaemic stroke," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    4. Abdel Abdellaoui & Karin J. H. Verweij, 2021. "Dissecting polygenic signals from genome-wide association studies on human behaviour," Nature Human Behaviour, Nature, vol. 5(6), pages 686-694, June.
    5. Luke R. Lloyd-Jones & Jian Zeng & Julia Sidorenko & Loïc Yengo & Gerhard Moser & Kathryn E. Kemper & Huanwei Wang & Zhili Zheng & Reedik Magi & Tõnu Esko & Andres Metspalu & Naomi R. Wray & Michael E., 2019. "Improved polygenic prediction by Bayesian multiple regression on summary statistics," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    6. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    7. Wonil Chung & Jun Chen & Constance Turman & Sara Lindstrom & Zhaozhong Zhu & Po-Ru Loh & Peter Kraft & Liming Liang, 2019. "Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    8. Zachary R. McCaw & Thomas Colthurst & Taedong Yun & Nicholas A. Furlotte & Andrew Carroll & Babak Alipanahi & Cory Y. McLean & Farhad Hormozdiari, 2022. "DeepNull models non-linear covariate effects to improve phenotypic prediction and association power," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Robert M. Maier & Zhihong Zhu & Sang Hong Lee & Maciej Trzaskowski & Douglas M. Ruderfer & Eli A. Stahl & Stephan Ripke & Naomi R. Wray & Jian Yang & Peter M. Visscher & Matthew R. Robinson, 2018. "Improving genetic prediction by leveraging genetic correlations among human diseases and traits," Nature Communications, Nature, vol. 9(1), pages 1-17, December.
    10. Geyu Zhou & Hongyu Zhao, 2021. "A fast and robust Bayesian nonparametric method for prediction of complex traits using summary statistics," PLOS Genetics, Public Library of Science, vol. 17(7), pages 1-17, July.
    11. Andrew D. Grotzinger & Mijke Rhemtulla & Ronald Vlaming & Stuart J. Ritchie & Travis T. Mallard & W. David Hill & Hill F. Ip & Riccardo E. Marioni & Andrew M. McIntosh & Ian J. Deary & Philipp D. Koel, 2019. "Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits," Nature Human Behaviour, Nature, vol. 3(5), pages 513-525, May.
    12. L. Duncan & H. Shen & B. Gelaye & J. Meijsen & K. Ressler & M. Feldman & R. Peterson & B. Domingue, 2019. "Analysis of polygenic risk score usage and performance in diverse human populations," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carla Márquez-Luna & Steven Gazal & Po-Ru Loh & Samuel S. Kim & Nicholas Furlotte & Adam Auton & Alkes L. Price, 2021. "Incorporating functional priors improves polygenic prediction accuracy in UK Biobank and 23andMe data sets," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Yosuke Tanigawa & Junyang Qian & Guhan Venkataraman & Johanne Marie Justesen & Ruilin Li & Robert Tibshirani & Trevor Hastie & Manuel A Rivas, 2022. "Significant sparse polygenic risk scores across 813 traits in UK Biobank," PLOS Genetics, Public Library of Science, vol. 18(3), pages 1-21, March.
    3. Tuomo Hartonen & Bradley Jermy & Hanna Sõnajalg & Pekka Vartiainen & Kristi Krebs & Andrius Vabalas & Tuija Leino & Hanna Nohynek & Jonas Sivelä & Reedik Mägi & Mark Daly & Hanna M. Ollila & Lili Mila, 2023. "Nationwide health, socio-economic and genetic predictors of COVID-19 vaccination status in Finland," Nature Human Behaviour, Nature, vol. 7(7), pages 1069-1083, July.
    4. Jingning Zhang & Jianan Zhan & Jin Jin & Cheng Ma & Ruzhang Zhao & Jared O’Connell & Yunxuan Jiang & Bertram L. Koelsch & Haoyu Zhang & Nilanjan Chatterjee, 2024. "An ensemble penalized regression method for multi-ancestry polygenic risk prediction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Chachrit Khunsriraksakul & Qinmengge Li & Havell Markus & Matthew T. Patrick & Renan Sauteraud & Daniel McGuire & Xingyan Wang & Chen Wang & Lida Wang & Siyuan Chen & Ganesh Shenoy & Bingshan Li & Xue, 2023. "Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Junyang Qian & Yosuke Tanigawa & Wenfei Du & Matthew Aguirre & Chris Chang & Robert Tibshirani & Manuel A Rivas & Trevor Hastie, 2020. "A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression with application to the UK Biobank," PLOS Genetics, Public Library of Science, vol. 16(10), pages 1-30, October.
    7. Jiacheng Miao & Hanmin Guo & Gefei Song & Zijie Zhao & Lin Hou & Qiongshi Lu, 2023. "Quantifying portable genetic effects and improving cross-ancestry genetic prediction with GWAS summary statistics," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Tabea Schoeler & Doug Speed & Eleonora Porcu & Nicola Pirastu & Jean-Baptiste Pingault & Zoltán Kutalik, 2023. "Participation bias in the UK Biobank distorts genetic associations and downstream analyses," Nature Human Behaviour, Nature, vol. 7(7), pages 1216-1227, July.
    9. Qile Dai & Geyu Zhou & Hongyu Zhao & Urmo Võsa & Lude Franke & Alexis Battle & Alexander Teumer & Terho Lehtimäki & Olli T. Raitakari & Tõnu Esko & Michael P. Epstein & Jingjing Yang, 2023. "OTTERS: a powerful TWAS framework leveraging summary-level reference data," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Wei Jiang & Ling Chen & Matthew J. Girgenti & Hongyu Zhao, 2024. "Tuning parameters for polygenic risk score methods using GWAS summary statistics from training data," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Zichen Zhang & Ye Eun Bae & Jonathan R. Bradley & Lang Wu & Chong Wu, 2022. "SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Song Zhai & Hong Zhang & Devan V. Mehrotra & Judong Shen, 2022. "Pharmacogenomics polygenic risk score for drug response prediction using PRS-PGx methods," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Rikifumi Ohta & Yosuke Tanigawa & Yuta Suzuki & Manolis Kellis & Shinichi Morishita, 2024. "A polygenic score method boosted by non-additive models," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Geyu Zhou & Hongyu Zhao, 2021. "A fast and robust Bayesian nonparametric method for prediction of complex traits using summary statistics," PLOS Genetics, Public Library of Science, vol. 17(7), pages 1-17, July.
    15. Pereira, Rita & Biroli, Pietro & von hinke, stephanie & Van Kippersluis, Hans & Galama, Titus & Rietveld, Niels & Thom, Kevin, 2022. "Gene-Environment Interplay in the Social Sciences," OSF Preprints d96z3, Center for Open Science.
    16. Winn-Nuñez, Emily T. & Griffin, Maryclare & Crawford, Lorin, 2024. "A simple approach for local and global variable importance in nonlinear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    17. Nuzulul Kurniansyah & Matthew O. Goodman & Tanika N. Kelly & Tali Elfassy & Kerri L. Wiggins & Joshua C. Bis & Xiuqing Guo & Walter Palmas & Kent D. Taylor & Henry J. Lin & Jeffrey Haessler & Yan Gao , 2022. "A multi-ethnic polygenic risk score is associated with hypertension prevalence and progression throughout adulthood," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Mingyang Li & Xixi Dang & Yiwei Chen & Zhifan Chen & Xinyi Xu & Zhiyong Zhao & Dan Wu, 2024. "Cognitive processing speed and accuracy are intrinsically different in genetic architecture and brain phenotypes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Lida Wang & Chachrit Khunsriraksakul & Havell Markus & Dieyi Chen & Fan Zhang & Fang Chen & Xiaowei Zhan & Laura Carrel & Dajiang. J. Liu & Bibo Jiang, 2024. "Integrating single cell expression quantitative trait loci summary statistics to understand complex trait risk genes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Royce E. Clifford & Adam X. Maihofer & Chris Chatzinakos & Jonathan R. I. Coleman & Nikolaos P. Daskalakis & Marianna Gasperi & Kelleigh Hogan & Elizabeth A. Mikita & Murray B. Stein & Catherine Tchea, 2024. "Genetic architecture distinguishes tinnitus from hearing loss," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40330-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.