Antibiotics can be used to contain drug-resistant bacteria by maintaining sufficiently large sensitive populations
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pbio.3000713
Download full text from publisher
References listed on IDEAS
- Remy Chait & Allison Craney & Roy Kishony, 2007. "Antibiotic interactions that select against resistance," Nature, Nature, vol. 446(7136), pages 668-671, April.
- Charlie G. Buffie & Vanni Bucci & Richard R. Stein & Peter T. McKenney & Lilan Ling & Asia Gobourne & Daniel No & Hui Liu & Melissa Kinnebrew & Agnes Viale & Eric Littmann & Marcel R. M. van den Brink, 2015. "Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile," Nature, Nature, vol. 517(7533), pages 205-208, January.
- Jason Karslake & Jeff Maltas & Peter Brumm & Kevin B Wood, 2016. "Population Density Modulates Drug Inhibition and Gives Rise to Potential Bistability of Treatment Outcomes for Bacterial Infections," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-21, October.
- Robert A. Gatenby, 2009. "A change of strategy in the war on cancer," Nature, Nature, vol. 459(7246), pages 508-509, May.
- Sushma Kommineni & Daniel J. Bretl & Vy Lam & Rajrupa Chakraborty & Michael Hayward & Pippa Simpson & Yumei Cao & Pavlos Bousounis & Christopher J. Kristich & Nita H. Salzman, 2015. "Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract," Nature, Nature, vol. 526(7575), pages 719-722, October.
- Katarina Bacevic & Robert Noble & Ahmed Soffar & Orchid Wael Ammar & Benjamin Boszonyik & Susana Prieto & Charles Vincent & Michael E. Hochberg & Liliana Krasinska & Daniel Fisher, 2017. "Spatial competition constrains resistance to targeted cancer therapy," Nature Communications, Nature, vol. 8(1), pages 1-15, December.
- Marianne Bauer & Isabella R Graf & Vudtiwat Ngampruetikorn & Greg J Stephens & Erwin Frey, 2017. "Exploiting ecology in drug pulse sequences in favour of population reduction," PLOS Computational Biology, Public Library of Science, vol. 13(9), pages 1-17, September.
- Troy Day & Andrew F Read, 2016. "Does High-Dose Antimicrobial Chemotherapy Prevent the Evolution of Resistance?," PLOS Computational Biology, Public Library of Science, vol. 12(1), pages 1-20, January.
- Eric D. Brown & Gerard D. Wright, 2016. "Antibacterial drug discovery in the resistance era," Nature, Nature, vol. 529(7586), pages 336-343, January.
- Jingsong Zhang & Jessica J. Cunningham & Joel S. Brown & Robert A. Gatenby, 2017. "Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Helena R. Ma & Helen Z. Xu & Kyeri Kim & Deverick J. Anderson & Lingchong You, 2024. "Private benefit of β-lactamase dictates selection dynamics of combination antibiotic treatment," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Teemu Kuosmanen & Johannes Cairns & Robert Noble & Niko Beerenwinkel & Tommi Mononen & Ville Mustonen, 2021. "Drug-induced resistance evolution necessitates less aggressive treatment," PLOS Computational Biology, Public Library of Science, vol. 17(9), pages 1-22, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pranav I. Warman & Artem Kaznatcheev & Arturo Araujo & Conor C. Lynch & David Basanta, 2018. "Fractionated Follow-Up Chemotherapy Delays the Onset of Resistance in Bone Metastatic Prostate Cancer," Games, MDPI, vol. 9(2), pages 1-10, April.
- Marianne Bauer & Isabella R Graf & Vudtiwat Ngampruetikorn & Greg J Stephens & Erwin Frey, 2017. "Exploiting ecology in drug pulse sequences in favour of population reduction," PLOS Computational Biology, Public Library of Science, vol. 13(9), pages 1-17, September.
- Gregory J Kimmel & Philip Gerlee & Philipp M Altrock, 2019. "Time scales and wave formation in non-linear spatial public goods games," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-22, September.
- Benjamin Wölfl & Hedy te Rietmole & Monica Salvioli & Artem Kaznatcheev & Frank Thuijsman & Joel S. Brown & Boudewijn Burgering & Kateřina Staňková, 2022. "The Contribution of Evolutionary Game Theory to Understanding and Treating Cancer," Dynamic Games and Applications, Springer, vol. 12(2), pages 313-342, June.
- Greenspoon, Philip B. & Mideo, Nicole, 2017. "Evolutionary rescue of a parasite population by mutation rate evolution," Theoretical Population Biology, Elsevier, vol. 117(C), pages 64-75.
- Maria Kleshnina & Sabrina Streipert & Joel S. Brown & Kateřina Staňková, 2023. "Game Theory for Managing Evolving Systems: Challenges and Opportunities of Including Vector-Valued Strategies and Life-History Traits," Dynamic Games and Applications, Springer, vol. 13(4), pages 1130-1155, December.
- Jeff Maltas & Kevin B Wood, 2019. "Pervasive and diverse collateral sensitivity profiles inform optimal strategies to limit antibiotic resistance," PLOS Biology, Public Library of Science, vol. 17(10), pages 1-34, October.
- Péter Bayer & Jeffrey West, 2023. "Games and the Treatment Convexity of Cancer," Dynamic Games and Applications, Springer, vol. 13(4), pages 1088-1105, December.
- Christian Hilbe & Maria Kleshnina & Kateřina Staňková, 2023. "Evolutionary Games and Applications: Fifty Years of ‘The Logic of Animal Conflict’," Dynamic Games and Applications, Springer, vol. 13(4), pages 1035-1048, December.
- Li You & Maximilian von Knobloch & Teresa Lopez & Vanessa Peschen & Sidney Radcliffe & Praveen Koshy Sam & Frank Thuijsman & Kateřina Staňková & Joel S. Brown, 2019. "Including Blood Vasculature into a Game-Theoretic Model of Cancer Dynamics," Games, MDPI, vol. 10(1), pages 1-22, March.
- Jin Feng & Youle Zheng & Wanqing Ma & Defeng Weng & Dapeng Peng & Yindi Xu & Zhifang Wang & Xu Wang, 2024. "A synthetic antibiotic class with a deeply-optimized design for overcoming bacterial resistance," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Teemu Kuosmanen & Johannes Cairns & Robert Noble & Niko Beerenwinkel & Tommi Mononen & Ville Mustonen, 2021. "Drug-induced resistance evolution necessitates less aggressive treatment," PLOS Computational Biology, Public Library of Science, vol. 17(9), pages 1-22, September.
- Joseph Peter Torella & Remy Chait & Roy Kishony, 2010. "Optimal Drug Synergy in Antimicrobial Treatments," PLOS Computational Biology, Public Library of Science, vol. 6(6), pages 1-9, June.
- Philip Gerlee & Linnéa Schmidt & Naser Monsefi & Teresia Kling & Rebecka Jörnsten & Sven Nelander, 2013. "Searching for Synergies: Matrix Algebraic Approaches for Efficient Pair Screening," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-10, July.
- Serhii Aif & Nico Appold & Lucas Kampman & Oskar Hallatschek & Jona Kayser, 2022. "Evolutionary rescue of resistant mutants is governed by a balance between radial expansion and selection in compact populations," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Francesca Menghi & Edison T. Liu, 2022. "Functional genomics of complex cancer genomes," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
- Sandrine Isaac & Alejandra Flor-Duro & Gloria Carruana & Leonor Puchades-Carrasco & Anna Quirant & Marina Lopez-Nogueroles & Antonio Pineda-Lucena & Marc Garcia-Garcera & Carles Ubeda, 2022. "Microbiome-mediated fructose depletion restricts murine gut colonization by vancomycin-resistant Enterococcus," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
- Kade D. Roberts & Yan Zhu & Mohammad A. K. Azad & Mei-Ling Han & Jiping Wang & Lynn Wang & Heidi H. Yu & Andrew S. Horne & Jo-Anne Pinson & David Rudd & Nicolas H. Voelcker & Nitin A. Patil & Jinxin Z, 2022. "A synthetic lipopeptide targeting top-priority multidrug-resistant Gram-negative pathogens," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Nassim Nicholas Taleb & Jeffrey West, 2022. "Working With Convex Responses: Antifragility From Finance to Oncology," Papers 2209.14631, arXiv.org, revised Jan 2023.
- Xu, Libai & Kong, Dehan & Wang, Lidan & Gu, Hong & Kenney, Toby & Xu, Ximing, 2023. "Proportional stochastic generalized Lotka–Volterra model with an application to learning microbial community structures," Applied Mathematics and Computation, Elsevier, vol. 448(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:3000713. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.