IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-35807-7.html
   My bibliography  Save this article

Volumetric additive manufacturing of pristine silk-based (bio)inks

Author

Listed:
  • Maobin Xie

    (Brigham and Women’s Hospital, Harvard Medical School
    The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital; School of Biomedical Engineering, Guangzhou Medical University)

  • Liming Lian

    (Brigham and Women’s Hospital, Harvard Medical School)

  • Xuan Mu

    (Brigham and Women’s Hospital, Harvard Medical School
    Tufts University)

  • Zeyu Luo

    (Brigham and Women’s Hospital, Harvard Medical School)

  • Carlos Ezio Garciamendez-Mijares

    (Brigham and Women’s Hospital, Harvard Medical School)

  • Zhenrui Zhang

    (Brigham and Women’s Hospital, Harvard Medical School)

  • Arturo López

    (Brigham and Women’s Hospital, Harvard Medical School)

  • Jennifer Manríquez

    (Brigham and Women’s Hospital, Harvard Medical School)

  • Xiao Kuang

    (Brigham and Women’s Hospital, Harvard Medical School)

  • Junqi Wu

    (Tufts University)

  • Jugal Kishore Sahoo

    (Tufts University)

  • Federico Zertuche González

    (Brigham and Women’s Hospital, Harvard Medical School)

  • Gang Li

    (Tufts University)

  • Guosheng Tang

    (Brigham and Women’s Hospital, Harvard Medical School)

  • Sushila Maharjan

    (Brigham and Women’s Hospital, Harvard Medical School)

  • Jie Guo

    (Brigham and Women’s Hospital, Harvard Medical School)

  • David L. Kaplan

    (Tufts University)

  • Yu Shrike Zhang

    (Brigham and Women’s Hospital, Harvard Medical School)

Abstract

Volumetric additive manufacturing (VAM) enables fast photopolymerization of three-dimensional constructs by illuminating dynamically evolving light patterns in the entire build volume. However, the lack of bioinks suitable for VAM is a critical limitation. This study reports rapid volumetric (bio)printing of pristine, unmodified silk-based (silk sericin (SS) and silk fibroin (SF)) (bio)inks to form sophisticated shapes and architectures. Of interest, combined with post-fabrication processing, the (bio)printed SS constructs reveal properties including reversible as well as repeated shrinkage and expansion, or shape-memory; whereas the (bio)printed SF constructs exhibit tunable mechanical performances ranging from a few hundred Pa to hundreds of MPa. Both types of silk-based (bio)inks are cytocompatible. This work supplies expanded bioink libraries for VAM and provides a path forward for rapid volumetric manufacturing of silk constructs, towards broadened biomedical applications.

Suggested Citation

  • Maobin Xie & Liming Lian & Xuan Mu & Zeyu Luo & Carlos Ezio Garciamendez-Mijares & Zhenrui Zhang & Arturo López & Jennifer Manríquez & Xiao Kuang & Junqi Wu & Jugal Kishore Sahoo & Federico Zertuche G, 2023. "Volumetric additive manufacturing of pristine silk-based (bio)inks," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35807-7
    DOI: 10.1038/s41467-023-35807-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-35807-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-35807-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Linpeng Fan & Jing-Liang Li & Zengxiao Cai & Xungai Wang, 2021. "Bioactive hierarchical silk fibers created by bioinspired self-assembly," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Damien Loterie & Paul Delrot & Christophe Moser, 2020. "High-resolution tomographic volumetric additive manufacturing," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    3. Nan Qin & Zhi-Gang Qian & Chengzhe Zhou & Xiao-Xia Xia & Tiger H. Tao, 2021. "3D electron-beam writing at sub-15 nm resolution using spider silk as a resist," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Soon Hee Kim & Yeung Kyu Yeon & Jung Min Lee & Janet Ren Chao & Young Jin Lee & Ye Been Seo & Md. Tipu Sultan & Ok Joo Lee & Ji Seung Lee & Sung-il Yoon & In-Sun Hong & Gilson Khang & Sang Jin Lee & J, 2018. "Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    5. John H. Martin & Brennan D. Yahata & Jacob M. Hundley & Justin A. Mayer & Tobias A. Schaedler & Tresa M. Pollock, 2017. "3D printing of high-strength aluminium alloys," Nature, Nature, vol. 549(7672), pages 365-369, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. Eliaz & S. Paul & D. Benyamin & A. Cernescu & S. R. Cohen & I. Rosenhek-Goldian & O. Brookstein & M. E. Miali & A. Solomonov & M. Greenblatt & Y. Levy & U. Raviv & A. Barth & U. Shimanovich, 2022. "Micro and nano-scale compartments guide the structural transition of silk protein monomers into silk fibers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Anyu Shang & Benjamin Stegman & Kenyi Choy & Tongjun Niu & Chao Shen & Zhongxia Shang & Xuanyu Sheng & Jack Lopez & Luke Hoppenrath & Bohua Peter Zhang & Haiyan Wang & Pascal Bellon & Xinghang Zhang, 2024. "Additive manufacturing of an ultrastrong, deformable Al alloy with nanoscale intermetallics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Haig A. Atikian & Neil Sinclair & Pawel Latawiec & Xiao Xiong & Srujan Meesala & Scarlett Gauthier & Daniel Wintz & Joseph Randi & David Bernot & Sage DeFrances & Jeffrey Thomas & Michael Roman & Sean, 2022. "Diamond mirrors for high-power continuous-wave lasers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Soo Young Cho & Dong Hae Ho & Yoon Young Choi & Soomook Lim & Sungjoo Lee & Ji Won Suk & Sae Byeok Jo & Jeong Ho Cho, 2022. "A general fruit acid chelation route for eco-friendly and ambient 3D printing of metals," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Yannick Naunheim & Christopher A. Schuh, 2024. "Multicomponent alloys designed to sinter," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Ning He & Xiaonan Wang & Liyang Shi & Jing Li & Lan Mo & Feng Chen & Yuting Huang & Hairong Liu & Xiaolong Zhu & Wei Zhu & Yiqi Mao & Xiaoxiao Han, 2023. "Photoinhibiting via simultaneous photoabsorption and free-radical reaction for high-fidelity light-based bioprinting," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Shubham Chandra & Chengcheng Wang & Shu Beng Tor & Upadrasta Ramamurty & Xipeng Tan, 2024. "Powder-size driven facile microstructure control in powder-fusion metal additive manufacturing processes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Jiayu Wu & Yuhuan Wang & Pan Jiang & Xiaolong Wang & Xin Jia & Feng Zhou, 2024. "Multiple hydrogen-bonding induced nonconventional red fluorescence emission in hydrogels," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Wenqi Ouyang & Xiayi Xu & Wanping Lu & Ni Zhao & Fei Han & Shih-Chi Chen, 2023. "Ultrafast 3D nanofabrication via digital holography," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Antony Orth & Daniel Webber & Yujie Zhang & Kathleen L. Sampson & Hendrick W. Haan & Thomas Lacelle & Rene Lam & Daphene Solis & Shyamaleeswari Dayanandan & Taylor Waddell & Tasha Lewis & Hayden K. Ta, 2023. "Deconvolution volumetric additive manufacturing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Zhang, Jingjing & Wang, Biao & Jin, Junhong & Yang, Shenglin & Li, Guang, 2022. "A review of the microporous layer in proton exchange membrane fuel cells: Materials and structural designs based on water transport mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    12. Yuze Huang & Tristan G. Fleming & Samuel J. Clark & Sebastian Marussi & Kamel Fezzaa & Jeyan Thiyagalingam & Chu Lun Alex Leung & Peter D. Lee, 2022. "Keyhole fluctuation and pore formation mechanisms during laser powder bed fusion additive manufacturing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Jingqi Zhang & Yingang Liu & Gang Sha & Shenbao Jin & Ziyong Hou & Mohamad Bayat & Nan Yang & Qiyang Tan & Yu Yin & Shiyang Liu & Jesper Henri Hattel & Matthew Dargusch & Xiaoxu Huang & Ming-Xing Zhan, 2022. "Designing against phase and property heterogeneities in additively manufactured titanium alloys," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Michael G. Taylor & Daniel J. Burrill & Jan Janssen & Enrique R. Batista & Danny Perez & Ping Yang, 2023. "Architector for high-throughput cross-periodic table 3D complex building," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Milae Lee & Woojin Choi & Jeong Min Lee & Seung Tae Lee & Won-Gun Koh & Jinkee Hong, 2024. "Flavor-switchable scaffold for cultured meat with enhanced aromatic properties," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Mahdi Derayatifar & Mohsen Habibi & Rama Bhat & Muthukumaran Packirisamy, 2024. "Holographic direct sound printing," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Zhongji Sun & Yan Ma & Dirk Ponge & Stefan Zaefferer & Eric A. Jägle & Baptiste Gault & Anthony D. Rollett & Dierk Raabe, 2022. "Thermodynamics-guided alloy and process design for additive manufacturing," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Ashkenazi, Dana, 2019. "How aluminum changed the world: A metallurgical revolution through technological and cultural perspectives," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 101-113.
    19. Xihao Pan & Rui Li & Wenyue Li & Wei Sun & Yiyang Yan & Xiaochen Xiang & Jinghua Fang & Youguo Liao & Chang Xie & Xiaozhao Wang & Youzhi Cai & Xudong Yao & Hongwei Ouyang, 2024. "Silk fibroin hydrogel adhesive enables sealed-tight reconstruction of meniscus tears," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Yingang Liu & Jingqi Zhang & Ranming Niu & Mohamad Bayat & Ying Zhou & Yu Yin & Qiyang Tan & Shiyang Liu & Jesper Henri Hattel & Miaoquan Li & Xiaoxu Huang & Julie Cairney & Yi-Sheng Chen & Mark Easto, 2024. "Manufacturing of high strength and high conductivity copper with laser powder bed fusion," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35807-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.