IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38169-2.html
   My bibliography  Save this article

Architector for high-throughput cross-periodic table 3D complex building

Author

Listed:
  • Michael G. Taylor

    (Los Alamos National Laboratory)

  • Daniel J. Burrill

    (Los Alamos National Laboratory)

  • Jan Janssen

    (Los Alamos National Laboratory)

  • Enrique R. Batista

    (Los Alamos National Laboratory)

  • Danny Perez

    (Los Alamos National Laboratory)

  • Ping Yang

    (Los Alamos National Laboratory)

Abstract

Rare-earth and actinide complexes are critical for a wealth of clean-energy applications. Three-dimensional (3D) structural generation and prediction for these organometallic systems remains a challenge, limiting opportunities for computational chemical discovery. Here, we introduce Architector, a high-throughput in-silico synthesis code for s-, p-, d-, and f-block mononuclear organometallic complexes capable of capturing nearly the full diversity of the known experimental chemical space. Beyond known chemical space, Architector performs in-silico design of new complexes including any chemically accessible metal-ligand combinations. Architector leverages metal-center symmetry, interatomic force fields, and tight binding methods to build many possible 3D conformers from minimal 2D inputs including metal oxidation and spin state. Over a set of more than 6,000 x-ray diffraction (XRD)-determined complexes spanning the periodic table, we demonstrate quantitative agreement between Architector-predicted and experimentally observed structures. Further, we demonstrate out-of-the box conformer generation and energetic rankings of non-minimum energy conformers produced from Architector, which are critical for exploring potential energy surfaces and training force fields. Overall, Architector represents a transformative step towards cross-periodic table computational design of metal complex chemistry.

Suggested Citation

  • Michael G. Taylor & Daniel J. Burrill & Jan Janssen & Enrique R. Batista & Danny Perez & Ping Yang, 2023. "Architector for high-throughput cross-periodic table 3D complex building," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38169-2
    DOI: 10.1038/s41467-023-38169-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38169-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38169-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arunima K. Singh & Joseph H. Montoya & John M. Gregoire & Kristin A. Persson, 2019. "Robust and synthesizable photocatalysts for CO2 reduction: a data-driven materials discovery," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    2. John H. Martin & Brennan D. Yahata & Jacob M. Hundley & Justin A. Mayer & Tobias A. Schaedler & Tresa M. Pollock, 2017. "3D printing of high-strength aluminium alloys," Nature, Nature, vol. 549(7672), pages 365-369, September.
    3. Wenhao Gao & Priyanka Raghavan & Connor W. Coley, 2022. "Autonomous platforms for data-driven organic synthesis," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anyu Shang & Benjamin Stegman & Kenyi Choy & Tongjun Niu & Chao Shen & Zhongxia Shang & Xuanyu Sheng & Jack Lopez & Luke Hoppenrath & Bohua Peter Zhang & Haiyan Wang & Pascal Bellon & Xinghang Zhang, 2024. "Additive manufacturing of an ultrastrong, deformable Al alloy with nanoscale intermetallics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Haig A. Atikian & Neil Sinclair & Pawel Latawiec & Xiao Xiong & Srujan Meesala & Scarlett Gauthier & Daniel Wintz & Joseph Randi & David Bernot & Sage DeFrances & Jeffrey Thomas & Michael Roman & Sean, 2022. "Diamond mirrors for high-power continuous-wave lasers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Yannick Naunheim & Christopher A. Schuh, 2024. "Multicomponent alloys designed to sinter," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Shubham Chandra & Chengcheng Wang & Shu Beng Tor & Upadrasta Ramamurty & Xipeng Tan, 2024. "Powder-size driven facile microstructure control in powder-fusion metal additive manufacturing processes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Aliaksei Mazheika & Yang-Gang Wang & Rosendo Valero & Francesc Viñes & Francesc Illas & Luca M. Ghiringhelli & Sergey V. Levchenko & Matthias Scheffler, 2022. "Artificial-intelligence-driven discovery of catalyst genes with application to CO2 activation on semiconductor oxides," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Wenqi Ouyang & Xiayi Xu & Wanping Lu & Ni Zhao & Fei Han & Shih-Chi Chen, 2023. "Ultrafast 3D nanofabrication via digital holography," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Zhang, Jingjing & Wang, Biao & Jin, Junhong & Yang, Shenglin & Li, Guang, 2022. "A review of the microporous layer in proton exchange membrane fuel cells: Materials and structural designs based on water transport mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Yuze Huang & Tristan G. Fleming & Samuel J. Clark & Sebastian Marussi & Kamel Fezzaa & Jeyan Thiyagalingam & Chu Lun Alex Leung & Peter D. Lee, 2022. "Keyhole fluctuation and pore formation mechanisms during laser powder bed fusion additive manufacturing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Jingqi Zhang & Yingang Liu & Gang Sha & Shenbao Jin & Ziyong Hou & Mohamad Bayat & Nan Yang & Qiyang Tan & Yu Yin & Shiyang Liu & Jesper Henri Hattel & Matthew Dargusch & Xiaoxu Huang & Ming-Xing Zhan, 2022. "Designing against phase and property heterogeneities in additively manufactured titanium alloys," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Mohammad Qorbani & Amr Sabbah & Ying-Ren Lai & Septia Kholimatussadiah & Shaham Quadir & Chih-Yang Huang & Indrajit Shown & Yi-Fan Huang & Michitoshi Hayashi & Kuei-Hsien Chen & Li-Chyong Chen, 2022. "Atomistic insights into highly active reconstructed edges of monolayer 2H-WSe2 photocatalyst," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Zhongji Sun & Yan Ma & Dirk Ponge & Stefan Zaefferer & Eric A. Jägle & Baptiste Gault & Anthony D. Rollett & Dierk Raabe, 2022. "Thermodynamics-guided alloy and process design for additive manufacturing," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Ashkenazi, Dana, 2019. "How aluminum changed the world: A metallurgical revolution through technological and cultural perspectives," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 101-113.
    13. Qiyang Tan & Haiwei Chang & Guofang Liang & Vladimir Luzin & Yu Yin & Fanshuo Wang & Xing Cheng & Ming Yan & Qiang Zhu & Christopher Hutchinson & Ming-Xing Zhang, 2024. "High performance plain carbon steels obtained through 3D-printing," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Yingang Liu & Jingqi Zhang & Ranming Niu & Mohamad Bayat & Ying Zhou & Yu Yin & Qiyang Tan & Shiyang Liu & Jesper Henri Hattel & Miaoquan Li & Xiaoxu Huang & Julie Cairney & Yi-Sheng Chen & Mark Easto, 2024. "Manufacturing of high strength and high conductivity copper with laser powder bed fusion," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Jihyun Baek & Qiu Jin & Nathan Scott Johnson & Yue Jiang & Rui Ning & Apurva Mehta & Samira Siahrostami & Xiaolin Zheng, 2022. "Discovery of LaAlO3 as an efficient catalyst for two-electron water electrolysis towards hydrogen peroxide," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Younggil Song & Fatima L. Mota & Damien Tourret & Kaihua Ji & Bernard Billia & Rohit Trivedi & Nathalie Bergeon & Alain Karma, 2023. "Cell invasion during competitive growth of polycrystalline solidification patterns," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    17. Maobin Xie & Liming Lian & Xuan Mu & Zeyu Luo & Carlos Ezio Garciamendez-Mijares & Zhenrui Zhang & Arturo López & Jennifer Manríquez & Xiao Kuang & Junqi Wu & Jugal Kishore Sahoo & Federico Zertuche G, 2023. "Volumetric additive manufacturing of pristine silk-based (bio)inks," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38169-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.