IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52261-1.html
   My bibliography  Save this article

Multicomponent alloys designed to sinter

Author

Listed:
  • Yannick Naunheim

    (Massachusetts Institute of Technology)

  • Christopher A. Schuh

    (Massachusetts Institute of Technology
    Northwestern University)

Abstract

Powder sintering is a low-energy, net-shape processing route for many new products in the additive manufacturing space. We advance the viewpoint that for future manufacturing, alloys should be designed from materials science principles to sinter quickly at lower temperatures and with controlled final microstructures. Specifically, we illustrate the computational design of multinary Ni-base alloys, whose chemistries permit a low-temperature solid-state sintering scheme without any pressure- or field-assistance, as well as heat-treatability after sintering. The strategy is based on sequential phase evolutions designed to occur during sintering. The reactions involve rapid reorganization of matter to full density in cycles up to just 1200 °C, while conventional Ni alloys sintered in the solid-state require about ten times longer, or more than 250 °C degrees higher temperature. Our approach yields an alloy that benefits from precipitation hardening, has an increased strength $$\sim$$ ~ 50% higher than solid-state processed commercial Ni alloys, and yet exhibits extensive plasticity beyond 35% uniaxial strain. The results point to a generalizable design scheme for many other alloys designed for solid-state powder processing that can enable greater value from additive manufacturing.

Suggested Citation

  • Yannick Naunheim & Christopher A. Schuh, 2024. "Multicomponent alloys designed to sinter," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52261-1
    DOI: 10.1038/s41467-024-52261-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52261-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52261-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chinnapat Panwisawas & Yuanbo T. Tang & Roger C. Reed, 2020. "Metal 3D printing as a disruptive technology for superalloys," Nature Communications, Nature, vol. 11(1), pages 1-4, December.
    2. Sean P. Murray & Kira M. Pusch & Andrew T. Polonsky & Chris J. Torbet & Gareth G. E. Seward & Ning Zhou & Stéphane A. J. Forsik & Peeyush Nandwana & Michael M. Kirka & Ryan R. Dehoff & William E. Slye, 2020. "A defect-resistant Co–Ni superalloy for 3D printing," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    3. Mansoo Park & Christopher A. Schuh, 2015. "Accelerated sintering in phase-separating nanostructured alloys," Nature Communications, Nature, vol. 6(1), pages 1-6, November.
    4. Pere Barriobero-Vila & Joachim Gussone & Andreas Stark & Norbert Schell & Jan Haubrich & Guillermo Requena, 2018. "Peritectic titanium alloys for 3D printing," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    5. Zhongji Sun & Yan Ma & Dirk Ponge & Stefan Zaefferer & Eric A. Jägle & Baptiste Gault & Anthony D. Rollett & Dierk Raabe, 2022. "Thermodynamics-guided alloy and process design for additive manufacturing," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Zhiming Li & Konda Gokuldoss Pradeep & Yun Deng & Dierk Raabe & Cemal Cem Tasan, 2016. "Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off," Nature, Nature, vol. 534(7606), pages 227-230, June.
    7. John H. Martin & Brennan D. Yahata & Jacob M. Hundley & Justin A. Mayer & Tobias A. Schaedler & Tresa M. Pollock, 2017. "3D printing of high-strength aluminium alloys," Nature, Nature, vol. 549(7672), pages 365-369, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chongle Zhang & Xiangyun Bao & Mengyuan Hao & Wei Chen & Dongdong Zhang & Dong Wang & Jinyu Zhang & Gang Liu & Jun Sun, 2022. "Hierarchical nano-martensite-engineered a low-cost ultra-strong and ductile titanium alloy," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Jingqi Zhang & Yingang Liu & Gang Sha & Shenbao Jin & Ziyong Hou & Mohamad Bayat & Nan Yang & Qiyang Tan & Yu Yin & Shiyang Liu & Jesper Henri Hattel & Matthew Dargusch & Xiaoxu Huang & Ming-Xing Zhan, 2022. "Designing against phase and property heterogeneities in additively manufactured titanium alloys," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Zhongji Sun & Yan Ma & Dirk Ponge & Stefan Zaefferer & Eric A. Jägle & Baptiste Gault & Anthony D. Rollett & Dierk Raabe, 2022. "Thermodynamics-guided alloy and process design for additive manufacturing," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Xizheng Wang & Yunhao Zhao & Gang Chen & Xinpeng Zhao & Chuan Liu & Soumya Sridar & Luis Fernando Ladinos Pizano & Shuke Li & Alexandra H. Brozena & Miao Guo & Hanlei Zhang & Yuankang Wang & Wei Xiong, 2022. "Ultrahigh-temperature melt printing of multi-principal element alloys," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Anyu Shang & Benjamin Stegman & Kenyi Choy & Tongjun Niu & Chao Shen & Zhongxia Shang & Xuanyu Sheng & Jack Lopez & Luke Hoppenrath & Bohua Peter Zhang & Haiyan Wang & Pascal Bellon & Xinghang Zhang, 2024. "Additive manufacturing of an ultrastrong, deformable Al alloy with nanoscale intermetallics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Haig A. Atikian & Neil Sinclair & Pawel Latawiec & Xiao Xiong & Srujan Meesala & Scarlett Gauthier & Daniel Wintz & Joseph Randi & David Bernot & Sage DeFrances & Jeffrey Thomas & Michael Roman & Sean, 2022. "Diamond mirrors for high-power continuous-wave lasers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Tong Li & Tianwei Liu & Shiteng Zhao & Yan Chen & Junhua Luan & Zengbao Jiao & Robert O. Ritchie & Lanhong Dai, 2023. "Ultra-strong tungsten refractory high-entropy alloy via stepwise controllable coherent nanoprecipitations," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    8. Zongrui Pei & Shiteng Zhao & Martin Detrois & Paul D. Jablonski & Jeffrey A. Hawk & David E. Alman & Mark Asta & Andrew M. Minor & Michael C. Gao, 2023. "Theory-guided design of high-entropy alloys with enhanced strength-ductility synergy," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Shubham Chandra & Chengcheng Wang & Shu Beng Tor & Upadrasta Ramamurty & Xipeng Tan, 2024. "Powder-size driven facile microstructure control in powder-fusion metal additive manufacturing processes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Bo Xiao & Junhua Luan & Shijun Zhao & Lijun Zhang & Shiyao Chen & Yilu Zhao & Lianyong Xu & C. T. Liu & Ji-Jung Kai & Tao Yang, 2022. "Achieving thermally stable nanoparticles in chemically complex alloys via controllable sluggish lattice diffusion," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Yang Yang & Sheng Yin & Qin Yu & Yingxin Zhu & Jun Ding & Ruopeng Zhang & Colin Ophus & Mark Asta & Robert O. Ritchie & Andrew M. Minor, 2024. "Rejuvenation as the origin of planar defects in the CrCoNi medium entropy alloy," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Li, Dongfang & Qu, Xiaoxiao & Li, Junjie & Hong, Suck Won & Jeon, Chung-hwan, 2022. "Microstructural development of product layer during limestone sulfation and its relationship to agglomeration in large-scale CFB boiler," Energy, Elsevier, vol. 238(PC).
    13. Sheng Xu & Takumi Odaira & Shunsuke Sato & Xiao Xu & Toshihiro Omori & Stefanus Harjo & Takuro Kawasaki & Hanuš Seiner & Kristýna Zoubková & Yasukazu Murakami & Ryosuke Kainuma, 2022. "Non-Hookean large elastic deformation in bulk crystalline metals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Bin Ouyang & Yan Zeng, 2024. "The rise of high-entropy battery materials," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    15. Wenqi Ouyang & Xiayi Xu & Wanping Lu & Ni Zhao & Fei Han & Shih-Chi Chen, 2023. "Ultrafast 3D nanofabrication via digital holography," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Neng Ren & Jun Li & Ruiyao Zhang & Chinnapat Panwisawas & Mingxu Xia & Hongbiao Dong & Jianguo Li, 2023. "Solute trapping and non-equilibrium microstructure during rapid solidification of additive manufacturing," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Hyun Chung & Won Seok Choi & Hosun Jun & Hyeon-Seok Do & Byeong-Joo Lee & Pyuck-Pa Choi & Heung Nam Han & Won-Seok Ko & Seok Su Sohn, 2023. "Doubled strength and ductility via maraging effect and dynamic precipitate transformation in ultrastrong medium-entropy alloy," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Zhang, Jingjing & Wang, Biao & Jin, Junhong & Yang, Shenglin & Li, Guang, 2022. "A review of the microporous layer in proton exchange membrane fuel cells: Materials and structural designs based on water transport mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    19. Benjamin P. MacLeod & Fraser G. L. Parlane & Connor C. Rupnow & Kevan E. Dettelbach & Michael S. Elliott & Thomas D. Morrissey & Ted H. Haley & Oleksii Proskurin & Michael B. Rooney & Nina Taherimakhs, 2022. "A self-driving laboratory advances the Pareto front for material properties," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Chang Liu & Jing Rao & Zhongji Sun & Wenjun Lu & James P. Best & Xuehan Li & Wenzhen Xia & Yilun Gong & Ye Wei & Bozhao Zhang & Jun Ding & Ge Wu & En Ma, 2024. "Near-theoretical strength and deformation stabilization achieved via grain boundary segregation and nano-clustering of solutes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52261-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.