IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47880-7.html
   My bibliography  Save this article

Multiple hydrogen-bonding induced nonconventional red fluorescence emission in hydrogels

Author

Listed:
  • Jiayu Wu

    (Chinese Academy of Sciences
    Shihezi University)

  • Yuhuan Wang

    (University of Chinese Academy of Sciences)

  • Pan Jiang

    (Chinese Academy of Sciences)

  • Xiaolong Wang

    (Chinese Academy of Sciences)

  • Xin Jia

    (Shihezi University)

  • Feng Zhou

    (Chinese Academy of Sciences)

Abstract

The development of unconventional long-wavelength fluorescent polymer hydrogels without using polycyclic aromatic hydrocarbons or extended π-conjugation is a fundamental challenge in luminescent materials owing to a lack of understanding regarding the spatial interactions induced inherent clustering-triggered emission under water-rich conditions. Inspired by the color change of protein astaxanthin as a result of heat-induced denaturation, we propose a thermodynamically driven strategy to develop red fluorescence (~610 nm) by boiling multiple hydrogen-bonded poly(N-acryloylsemicarbazide) hydrogels in a water bath. We reveal that thermodynamically driven conformational changes of polymer chains from isolated hydrogen bonding donor-acceptor structures to through-space interaction structures induce intrinsic fluorescence shifts from blue to red during clustering-triggered emission. The proposed multiple hydrogen-bonding supramolecular hydrogel shows good fluorescence stability, mechanical robustness, and 3D printability for customizable shaping. We provide a viable method to prepare nonconventional long-wavelength fluorescent hydrogels towards soft fluorescent devices without initially introducing any fluorescent components.

Suggested Citation

  • Jiayu Wu & Yuhuan Wang & Pan Jiang & Xiaolong Wang & Xin Jia & Feng Zhou, 2024. "Multiple hydrogen-bonding induced nonconventional red fluorescence emission in hydrogels," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47880-7
    DOI: 10.1038/s41467-024-47880-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47880-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47880-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Soon Hee Kim & Yeung Kyu Yeon & Jung Min Lee & Janet Ren Chao & Young Jin Lee & Ye Been Seo & Md. Tipu Sultan & Ok Joo Lee & Ji Seung Lee & Sung-il Yoon & In-Sun Hong & Gilson Khang & Sang Jin Lee & J, 2018. "Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    2. Jun-Long Zhu & Lin Xu & Yuan-Yuan Ren & Ying Zhang & Xi Liu & Guang-Qiang Yin & Bin Sun & Xiaodan Cao & Zhuang Chen & Xiao-Li Zhao & Hongwei Tan & Jinquan Chen & Xiaopeng Li & Hai-Bo Yang, 2019. "Switchable organoplatinum metallacycles with high quantum yields and tunable fluorescence wavelengths," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    3. Jianyu Zhang & Parvej Alam & Siwei Zhang & Hanchen Shen & Lianrui Hu & Herman H. Y. Sung & Ian D. Williams & Jianwei Sun & Jacky W. Y. Lam & Haoke Zhang & Ben Zhong Tang, 2022. "Secondary through-space interactions facilitated single-molecule white-light emission from clusteroluminogens," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Soon Hee Kim & Yeung Kyu Yeon & Jung Min Lee & Janet Ren Chao & Young Jin Lee & Ye Been Seo & Md. Tipu Sultan & Ok Joo Lee & Ji Seung Lee & Sung-il Yoon & In-Sun Hong & Gilson Khang & Sang Jin Lee & J, 2018. "Publisher Correction: Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing," Nature Communications, Nature, vol. 9(1), pages 1-2, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ning He & Xiaonan Wang & Liyang Shi & Jing Li & Lan Mo & Feng Chen & Yuting Huang & Hairong Liu & Xiaolong Zhu & Wei Zhu & Yiqi Mao & Xiaoxiao Han, 2023. "Photoinhibiting via simultaneous photoabsorption and free-radical reaction for high-fidelity light-based bioprinting," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Xihao Pan & Rui Li & Wenyue Li & Wei Sun & Yiyang Yan & Xiaochen Xiang & Jinghua Fang & Youguo Liao & Chang Xie & Xiaozhao Wang & Youzhi Cai & Xudong Yao & Hongwei Ouyang, 2024. "Silk fibroin hydrogel adhesive enables sealed-tight reconstruction of meniscus tears," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Soo Young Cho & Dong Hae Ho & Yoon Young Choi & Soomook Lim & Sungjoo Lee & Ji Won Suk & Sae Byeok Jo & Jeong Ho Cho, 2022. "A general fruit acid chelation route for eco-friendly and ambient 3D printing of metals," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Bo Song & Jianyu Zhang & Jiadong Zhou & Anjun Qin & Jacky W. Y. Lam & Ben Zhong Tang, 2023. "Facile conversion of water to functional molecules and cross-linked polymeric films with efficient clusteroluminescence," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Yuling Xu & Chonglu Li & Shuai Lu & Zhizheng Wang & Shuang Liu & Xiujun Yu & Xiaopeng Li & Yao Sun, 2022. "Construction of emissive ruthenium(II) metallacycle over 1000 nm wavelength for in vivo biomedical applications," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Qiuju Li & Xingyi Wang & Qisu Huang & Zhuo Li & Ben Zhong Tang & Shun Mao, 2023. "Molecular-level enhanced clusterization-triggered emission of nonconventional luminophores in dilute aqueous solution," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Maobin Xie & Liming Lian & Xuan Mu & Zeyu Luo & Carlos Ezio Garciamendez-Mijares & Zhenrui Zhang & Arturo López & Jennifer Manríquez & Xiao Kuang & Junqi Wu & Jugal Kishore Sahoo & Federico Zertuche G, 2023. "Volumetric additive manufacturing of pristine silk-based (bio)inks," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47880-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.