IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35505-w.html
   My bibliography  Save this article

Micro and nano-scale compartments guide the structural transition of silk protein monomers into silk fibers

Author

Listed:
  • D. Eliaz

    (Weizmann Institute of Science)

  • S. Paul

    (Stockholm University)

  • D. Benyamin

    (The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram)

  • A. Cernescu

    (Neaspec—Attocube Systems AG, Eglfinger Weg 2)

  • S. R. Cohen

    (Weizmann Institute of Science)

  • I. Rosenhek-Goldian

    (Weizmann Institute of Science)

  • O. Brookstein

    (Weizmann Institute of Science)

  • M. E. Miali

    (Weizmann Institute of Science)

  • A. Solomonov

    (Weizmann Institute of Science)

  • M. Greenblatt

    (Weizmann Institute of Science)

  • Y. Levy

    (Weizmann Institute of Science)

  • U. Raviv

    (The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram)

  • A. Barth

    (Stockholm University)

  • U. Shimanovich

    (Weizmann Institute of Science)

Abstract

Silk is a unique, remarkably strong biomaterial made of simple protein building blocks. To date, no synthetic method has come close to reproducing the properties of natural silk, due to the complexity and insufficient understanding of the mechanism of the silk fiber formation. Here, we use a combination of bulk analytical techniques and nanoscale analytical methods, including nano-infrared spectroscopy coupled with atomic force microscopy, to probe the structural characteristics directly, transitions, and evolution of the associated mechanical properties of silk protein species corresponding to the supramolecular phase states inside the silkworm’s silk gland. We found that the key step in silk-fiber production is the formation of nanoscale compartments that guide the structural transition of proteins from their native fold into crystalline β-sheets. Remarkably, this process is reversible. Such reversibility enables the remodeling of the final mechanical characteristics of silk materials. These results open a new route for tailoring silk processing for a wide range of new material formats by controlling the structural transitions and self-assembly of the silk protein’s supramolecular phases.

Suggested Citation

  • D. Eliaz & S. Paul & D. Benyamin & A. Cernescu & S. R. Cohen & I. Rosenhek-Goldian & O. Brookstein & M. E. Miali & A. Solomonov & M. Greenblatt & Y. Levy & U. Raviv & A. Barth & U. Shimanovich, 2022. "Micro and nano-scale compartments guide the structural transition of silk protein monomers into silk fibers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35505-w
    DOI: 10.1038/s41467-022-35505-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35505-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35505-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Simone Schwarze & Fabian U. Zwettler & Christopher M. Johnson & Hannes Neuweiler, 2013. "The N-terminal domains of spider silk proteins assemble ultrafast and protected from charge screening," Nature Communications, Nature, vol. 4(1), pages 1-7, December.
    2. Hyoung-Joon Jin & David L. Kaplan, 2003. "Mechanism of silk processing in insects and spiders," Nature, Nature, vol. 424(6952), pages 1057-1061, August.
    3. Shengjie Ling & Zhao Qin & Chunmei Li & Wenwen Huang & David L. Kaplan & Markus J. Buehler, 2017. "Polymorphic regenerated silk fibers assembled through bioinspired spinning," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
    4. Zhengzhong Shao & Fritz Vollrath, 2002. "Surprising strength of silkworm silk," Nature, Nature, vol. 418(6899), pages 741-741, August.
    5. Fritz Vollrath & David P. Knight, 2001. "Liquid crystalline spinning of spider silk," Nature, Nature, vol. 410(6828), pages 541-548, March.
    6. Quan Wan & Mei Yang & Jiaqi Hu & Fang Lei & Yajun Shuai & Jie Wang & Chris Holland & Cornelia Rodenburg & Mingying Yang, 2021. "Mesoscale structure development reveals when a silkworm silk is spun," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    7. Linpeng Fan & Jing-Liang Li & Zengxiao Cai & Xungai Wang, 2021. "Bioactive hierarchical silk fibers created by bioinspired self-assembly," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    8. Ulyana Shimanovich & Francesco S. Ruggeri & Erwin De Genst & Jozef Adamcik & Teresa P. Barros & David Porter & Thomas Müller & Raffaele Mezzenga & Christopher M. Dobson & Fritz Vollrath & Chris Hollan, 2017. "Silk micrococoons for protein stabilisation and molecular encapsulation," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenchen Wu & Yu Duan & Lintao Yu & Yao Hu & Chenxi Zhao & Chunwang Ji & Xiangdong Guo & Shu Zhang & Xiaokang Dai & Puyi Ma & Qian Wang & Shengjie Ling & Xiaoxia Yang & Qing Dai, 2024. "In-situ observation of silk nanofibril assembly via graphene plasmonic infrared sensor," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Ori Brookstein & Eyal Shimoni & Dror Eliaz & Ifat Kaplan-Ashiri & Itay Carmel & Ulyana Shimanovich, 2024. "Metal ions guide the production of silkworm silk fibers," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianming Chen & Arata Tsuchida & Ali D. Malay & Kousuke Tsuchiya & Hiroyasu Masunaga & Yui Tsuji & Mako Kuzumoto & Kenji Urayama & Hirofumi Shintaku & Keiji Numata, 2024. "Replicating shear-mediated self-assembly of spider silk through microfluidics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Chenchen Wu & Yu Duan & Lintao Yu & Yao Hu & Chenxi Zhao & Chunwang Ji & Xiangdong Guo & Shu Zhang & Xiaokang Dai & Puyi Ma & Qian Wang & Shengjie Ling & Xiaoxia Yang & Qing Dai, 2024. "In-situ observation of silk nanofibril assembly via graphene plasmonic infrared sensor," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Wenbo Hu & Anqiang Jia & Sanyuan Ma & Guoqing Zhang & Zhaoyuan Wei & Fang Lu & Yongjiang Luo & Zhisheng Zhang & Jiahe Sun & Tianfang Yang & TingTing Xia & Qinhui Li & Ting Yao & Jiangyu Zheng & Zijie , 2023. "A molecular atlas reveals the tri-sectional spinning mechanism of spider dragline silk," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Ori Brookstein & Eyal Shimoni & Dror Eliaz & Ifat Kaplan-Ashiri & Itay Carmel & Ulyana Shimanovich, 2024. "Metal ions guide the production of silkworm silk fibers," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Amy Fitzgerald & Will Proud & Ali Kandemir & Richard J. Murphy & David A. Jesson & Richard S. Trask & Ian Hamerton & Marco L. Longana, 2021. "A Life Cycle Engineering Perspective on Biocomposites as a Solution for a Sustainable Recovery," Sustainability, MDPI, vol. 13(3), pages 1-25, January.
    6. Jing Sun & Haonan He & Kelu Zhao & Wenhao Cheng & Yuanxin Li & Peng Zhang & Sikang Wan & Yawei Liu & Mengyao Wang & Ming Li & Zheng Wei & Bo Li & Yi Zhang & Cong Li & Yao Sun & Jianlei Shen & Jingjing, 2023. "Protein fibers with self-recoverable mechanical properties via dynamic imine chemistry," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. He, Ji-Huan & Wan, Yu-Qin & Xu, Lan, 2007. "Nano-effects, quantum-like properties in electrospun nanofibers," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 26-37.
    8. Ke Wang & Qian Ma & Xiao Qin & Shu Dong Wang, 2018. "Silk Fibroin and its Application in Tissue Engineering," Current Trends in Fashion Technology & Textile Engineering, Juniper Publishers Inc., vol. 4(4), pages 74-76, November.
    9. He, Ji-Huan & Liu, Yong & Xu, Lan & Yu, Jian-Yong & Sun, Gang, 2008. "BioMimic fabrication of electrospun nanofibers with high-throughput," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 643-651.
    10. Gaudia, Garizaldy G., 2022. "Improving the quality of silk yarn and fabric using various edible oils during pre-treatment," MPRA Paper 116655, University Library of Munich, Germany.
    11. Qijue Wang & Patrick McArdle & Stephanie L. Wang & Ryan L. Wilmington & Zhen Xing & Alexander Greenwood & Myriam L. Cotten & M. Mumtaz Qazilbash & Hannes C. Schniepp, 2022. "Protein secondary structure in spider silk nanofibrils," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. En-Jiang Liu & Jia-Xing Huang & Run-Ze Hu & Xiao-Hui Yao & Wei-Guo Zhao & Dong-Yang Zhang & Tao Chen, 2022. "A Hierarchical Porous Cellulose Sponge Modified with Chlorogenic Acid as a Antibacterial Material for Water Disinfection," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    13. Yongchun Liu & Ke Li & Juanhua Tian & Aiting Gao & Lihua Tian & Hao Su & Shuting Miao & Fei Tao & Hao Ren & Qingmin Yang & Jing Cao & Peng Yang, 2023. "Synthesis of robust underwater glues from common proteins via unfolding-aggregating strategy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Tina Arndt & Kristaps Jaudzems & Olga Shilkova & Juanita Francis & Mathias Johansson & Peter R. Laity & Cagla Sahin & Urmimala Chatterjee & Nina Kronqvist & Edgar Barajas-Ledesma & Rakesh Kumar & Gefe, 2022. "Spidroin N-terminal domain forms amyloid-like fibril based hydrogels and provides a protein immobilization platform," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Xuedong Chen & Yongfeng Wang & Yujun Wang & Qiuying Li & Xinyin Liang & Guang Wang & Jianglan Li & Ruji Peng & Yanghu Sima & Shiqing Xu, 2022. "Ectopic expression of sericin enables efficient production of ancient silk with structural changes in silkworm," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Lei Su & Shuhai Jia & Junqiang Ren & Xuefeng Lu & Sheng-Wu Guo & Pengfei Guo & Zhixin Cai & De Lu & Min Niu & Lei Zhuang & Kang Peng & Hongjie Wang, 2023. "Strong yet flexible ceramic aerogel," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Maobin Xie & Liming Lian & Xuan Mu & Zeyu Luo & Carlos Ezio Garciamendez-Mijares & Zhenrui Zhang & Arturo López & Jennifer Manríquez & Xiao Kuang & Junqi Wu & Jugal Kishore Sahoo & Federico Zertuche G, 2023. "Volumetric additive manufacturing of pristine silk-based (bio)inks," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35505-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.