IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-022-35651-1.html
   My bibliography  Save this article

Electrical spectroscopy of defect states and their hybridization in monolayer MoS2

Author

Listed:
  • Yanfei Zhao

    (École Polytechnique Fédérale de Lausanne (EPFL)
    École Polytechnique Fédérale de Lausanne (EPFL))

  • Mukesh Tripathi

    (École Polytechnique Fédérale de Lausanne (EPFL)
    École Polytechnique Fédérale de Lausanne (EPFL))

  • Kristiāns Čerņevičs

    (École Polytechnique Fédérale de Lausanne (EPFL))

  • Ahmet Avsar

    (École Polytechnique Fédérale de Lausanne (EPFL)
    École Polytechnique Fédérale de Lausanne (EPFL)
    National University of Singapore)

  • Hyun Goo Ji

    (École Polytechnique Fédérale de Lausanne (EPFL)
    École Polytechnique Fédérale de Lausanne (EPFL))

  • Juan Francisco Gonzalez Marin

    (École Polytechnique Fédérale de Lausanne (EPFL)
    École Polytechnique Fédérale de Lausanne (EPFL))

  • Cheol-Yeon Cheon

    (École Polytechnique Fédérale de Lausanne (EPFL)
    École Polytechnique Fédérale de Lausanne (EPFL))

  • Zhenyu Wang

    (École Polytechnique Fédérale de Lausanne (EPFL)
    École Polytechnique Fédérale de Lausanne (EPFL))

  • Oleg V. Yazyev

    (École Polytechnique Fédérale de Lausanne (EPFL))

  • Andras Kis

    (École Polytechnique Fédérale de Lausanne (EPFL)
    École Polytechnique Fédérale de Lausanne (EPFL))

Abstract

Defects in solids are unavoidable and can create complex electronic states that can significantly influence the electrical and optical properties of semiconductors. With the rapid progress in the integration of 2D semiconductors in practical devices, it is imperative to understand and characterize the influence of defects in this class of materials. Here, we examine the electrical response of defect filling and emission using deep level transient spectroscopy (DLTS) and reveal defect states and their hybridization in a monolayer MOCVD-grown material deposited on CMOS-compatible substrates. Supported by aberration-corrected STEM imaging and theoretical calculations, we find that neighboring sulfur vacancy pairs introduce additional shallow trap states via hybridization of individual vacancy levels. Even though such vacancy pairs only represent ~10% of the total defect concentration, they can have a substantial influence on the off currents and switching slopes of field-effect transistors based on 2D semiconductors. Our technique, which can quantify the energy states of different defects and their interactions, allows rapid and nondestructive electrical characterization of defect states important for the defect engineering of 2D semiconductors.

Suggested Citation

  • Yanfei Zhao & Mukesh Tripathi & Kristiāns Čerņevičs & Ahmet Avsar & Hyun Goo Ji & Juan Francisco Gonzalez Marin & Cheol-Yeon Cheon & Zhenyu Wang & Oleg V. Yazyev & Andras Kis, 2023. "Electrical spectroscopy of defect states and their hybridization in monolayer MoS2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35651-1
    DOI: 10.1038/s41467-022-35651-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35651-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35651-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wenjuan Zhu & Tony Low & Yi-Hsien Lee & Han Wang & Damon B. Farmer & Jing Kong & Fengnian Xia & Phaedon Avouris, 2014. "Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition," Nature Communications, Nature, vol. 5(1), pages 1-8, May.
    2. Ming-Yang Li & Sheng-Kai Su & H.-S. Philip Wong & Lain-Jong Li, 2019. "How 2D semiconductors could extend Moore’s law," Nature, Nature, vol. 567(7747), pages 169-170, March.
    3. Hao Qiu & Tao Xu & Zilu Wang & Wei Ren & Haiyan Nan & Zhenhua Ni & Qian Chen & Shijun Yuan & Feng Miao & Fengqi Song & Gen Long & Yi Shi & Litao Sun & Jinlan Wang & Xinran Wang, 2013. "Hopping transport through defect-induced localized states in molybdenum disulphide," Nature Communications, Nature, vol. 4(1), pages 1-6, December.
    4. Jinhua Hong & Zhixin Hu & Matt Probert & Kun Li & Danhui Lv & Xinan Yang & Lin Gu & Nannan Mao & Qingliang Feng & Liming Xie & Jin Zhang & Dianzhong Wu & Zhiyong Zhang & Chuanhong Jin & Wei Ji & Xixia, 2015. "Exploring atomic defects in molybdenum disulphide monolayers," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
    5. Penghong Ci & Xuezeng Tian & Jun Kang & Anthony Salazar & Kazutaka Eriguchi & Sorren Warkander & Kechao Tang & Jiaman Liu & Yabin Chen & Sefaattin Tongay & Wladek Walukiewicz & Jianwei Miao & Oscar Du, 2020. "Chemical trends of deep levels in van der Waals semiconductors," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    6. Penghong Ci & Xuezeng Tian & Jun Kang & Anthony Salazar & Kazutaka Eriguchi & Sorren Warkander & Kechao Tang & Jiaman Liu & Yabin Chen & Sefaattin Tongay & Wladek Walukiewicz & Jianwei Miao & Oscar Du, 2020. "Author Correction: Chemical trends of deep levels in van der Waals semiconductors," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Li & Qinqin Wang & Fanfan Wu & Qiaoling Xu & Jinpeng Tian & Zhiheng Huang & Qinghe Wang & Xuan Zhao & Qinghua Zhang & Qinkai Fan & Xiuzhen Li & Yalin Peng & Yangkun Zhang & Kunshan Ji & Aomiao Zhi , 2024. "Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Zhaojun Li & Hope Bretscher & Yunwei Zhang & Géraud Delport & James Xiao & Alpha Lee & Samuel D. Stranks & Akshay Rao, 2021. "Mechanistic insight into the chemical treatments of monolayer transition metal disulfides for photoluminescence enhancement," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Yi Wan & En Li & Zhihao Yu & Jing-Kai Huang & Ming-Yang Li & Ang-Sheng Chou & Yi-Te Lee & Chien-Ju Lee & Hung-Chang Hsu & Qin Zhan & Areej Aljarb & Jui-Han Fu & Shao-Pin Chiu & Xinran Wang & Juhn-Jong, 2022. "Low-defect-density WS2 by hydroxide vapor phase deposition," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Jie Xu & Xiong-Xiong Xue & Gonglei Shao & Changfei Jing & Sheng Dai & Kun He & Peipei Jia & Shun Wang & Yifei Yuan & Jun Luo & Jun Lu, 2023. "Atomic-level polarization in electric fields of defects for electrocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Yeonghun Lee & Yaoqiao Hu & Xiuyao Lang & Dongwook Kim & Kejun Li & Yuan Ping & Kai-Mei C. Fu & Kyeongjae Cho, 2022. "Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Song Li & Gergő Thiering & Péter Udvarhelyi & Viktor Ivády & Adam Gali, 2022. "Carbon defect qubit in two-dimensional WS2," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Thushani Silva & Mirette Fawzy & Amirhossein Hasani & Hamidreza Ghanbari & Amin Abnavi & Abdelrahman Askar & Yue Ling & Mohammad Reza Mohammadzadeh & Fahmid Kabir & Ribwar Ahmadi & Miriam Rosin & Kare, 2022. "Ultrasensitive rapid cytokine sensors based on asymmetric geometry two-dimensional MoS2 diodes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Mohammad Qorbani & Amr Sabbah & Ying-Ren Lai & Septia Kholimatussadiah & Shaham Quadir & Chih-Yang Huang & Indrajit Shown & Yi-Fan Huang & Michitoshi Hayashi & Kuei-Hsien Chen & Li-Chyong Chen, 2022. "Atomistic insights into highly active reconstructed edges of monolayer 2H-WSe2 photocatalyst," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Qiuyang Li & Adam Alfrey & Jiaqi Hu & Nathanial Lydick & Eunice Paik & Bin Liu & Haiping Sun & Yang Lu & Ruoyu Wang & Stephen Forrest & Hui Deng, 2023. "Macroscopic transition metal dichalcogenides monolayers with uniformly high optical quality," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Yonggang Zuo & Can Liu & Liping Ding & Ruixi Qiao & Jinpeng Tian & Chang Liu & Qinghe Wang & Guodong Xue & Yilong You & Quanlin Guo & Jinhuan Wang & Ying Fu & Kehai Liu & Xu Zhou & Hao Hong & Muhong W, 2022. "Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    11. Biswajit Datta & Mandeep Khatoniar & Prathmesh Deshmukh & Félix Thouin & Rezlind Bushati & Simone Liberato & Stephane Kena Cohen & Vinod M. Menon, 2022. "Highly nonlinear dipolar exciton-polaritons in bilayer MoS2," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    12. Bong Gyu Shin & Ji-Hoon Park & Jz-Yuan Juo & Jing Kong & Soon Jung Jung, 2023. "Structural-disorder-driven critical quantum fluctuation and localization in two-dimensional semiconductors," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Jian Zhou & Chunchen Zhang & Li Shi & Xiaoqing Chen & Tae Soo Kim & Minseung Gyeon & Jian Chen & Jinlan Wang & Linwei Yu & Xinran Wang & Kibum Kang & Emanuele Orgiu & Paolo Samorì & Kenji Watanabe & T, 2022. "Non-invasive digital etching of van der Waals semiconductors," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Xiaosong Wu & Shaocong Wang & Wei Huang & Yu Dong & Zhongrui Wang & Weiguo Huang, 2023. "Wearable in-sensor reservoir computing using optoelectronic polymers with through-space charge-transport characteristics for multi-task learning," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Mengshi Yu & Congwei Tan & Yuling Yin & Junchuan Tang & Xiaoyin Gao & Hongtao Liu & Feng Ding & Hailin Peng, 2024. "Integrated 2D multi-fin field-effect transistors," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Mengjiao Han & Cong Wang & Kangdi Niu & Qishuo Yang & Chuanshou Wang & Xi Zhang & Junfeng Dai & Yujia Wang & Xiuliang Ma & Junling Wang & Lixing Kang & Wei Ji & Junhao Lin, 2022. "Continuously tunable ferroelectric domain width down to the single-atomic limit in bismuth tellurite," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35651-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.