IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms4087.html
   My bibliography  Save this article

Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition

Author

Listed:
  • Wenjuan Zhu

    (IBM Thomas J. Watson Research Center)

  • Tony Low

    (IBM Thomas J. Watson Research Center)

  • Yi-Hsien Lee

    (National Tsing Hua University)

  • Han Wang

    (IBM Thomas J. Watson Research Center)

  • Damon B. Farmer

    (IBM Thomas J. Watson Research Center)

  • Jing Kong

    (Massachusetts Institute of Technology)

  • Fengnian Xia

    (Yale University)

  • Phaedon Avouris

    (IBM Thomas J. Watson Research Center)

Abstract

Layered transition metal dichalcogenides display a wide range of attractive physical and chemical properties and are potentially important for various device applications. Here we report the electronic transport and device properties of monolayer molybdenum disulphide grown by chemical vapour deposition. We show that these devices have the potential to suppress short channel effects and have high critical breakdown electric field. However, our study reveals that the electronic properties of these devices are at present severely limited by the presence of a significant amount of band tail trapping states. Through capacitance and ac conductance measurements, we systematically quantify the density-of-states and response time of these states. Because of the large amount of trapped charges, the measured effective mobility also leads to a large underestimation of the true band mobility and the potential of the material. Continual engineering efforts on improving the sample quality are needed for its potential applications.

Suggested Citation

  • Wenjuan Zhu & Tony Low & Yi-Hsien Lee & Han Wang & Damon B. Farmer & Jing Kong & Fengnian Xia & Phaedon Avouris, 2014. "Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition," Nature Communications, Nature, vol. 5(1), pages 1-8, May.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4087
    DOI: 10.1038/ncomms4087
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms4087
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms4087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bong Gyu Shin & Ji-Hoon Park & Jz-Yuan Juo & Jing Kong & Soon Jung Jung, 2023. "Structural-disorder-driven critical quantum fluctuation and localization in two-dimensional semiconductors," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Yanfei Zhao & Mukesh Tripathi & Kristiāns Čerņevičs & Ahmet Avsar & Hyun Goo Ji & Juan Francisco Gonzalez Marin & Cheol-Yeon Cheon & Zhenyu Wang & Oleg V. Yazyev & Andras Kis, 2023. "Electrical spectroscopy of defect states and their hybridization in monolayer MoS2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.