IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28628-7.html
   My bibliography  Save this article

Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply

Author

Listed:
  • Yonggang Zuo

    (Peking University
    Institute of Physics, Chinese Academy of Sciences
    Kunming University of Science and Technology)

  • Can Liu

    (Peking University
    Renmin University of China)

  • Liping Ding

    (Institute for Basic Science)

  • Ruixi Qiao

    (Peking University)

  • Jinpeng Tian

    (Institute of Physics, Chinese Academy of Sciences)

  • Chang Liu

    (Peking University)

  • Qinghe Wang

    (Peking University)

  • Guodong Xue

    (Peking University)

  • Yilong You

    (Peking University)

  • Quanlin Guo

    (Peking University)

  • Jinhuan Wang

    (Peking University)

  • Ying Fu

    (Songshan Lake Materials Laboratory)

  • Kehai Liu

    (Songshan Lake Materials Laboratory)

  • Xu Zhou

    (South China Normal University, Guangzhou)

  • Hao Hong

    (Peking University)

  • Muhong Wu

    (Peking University
    Peking University)

  • Xiaobo Lu

    (Peking University)

  • Rong Yang

    (Institute of Physics, Chinese Academy of Sciences)

  • Guangyu Zhang

    (Institute of Physics, Chinese Academy of Sciences)

  • Dapeng Yu

    (Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology)

  • Enge Wang

    (Peking University
    Songshan Lake Materials Laboratory
    Liaoning University)

  • Xuedong Bai

    (Institute of Physics, Chinese Academy of Sciences
    Songshan Lake Materials Laboratory)

  • Feng Ding

    (Institute for Basic Science)

  • Kaihui Liu

    (Peking University
    Peking University
    Songshan Lake Materials Laboratory)

Abstract

The precise precursor supply is a precondition for controllable growth of two-dimensional (2D) transition metal dichalcogenides (TMDs). Although great efforts have been devoted to modulating the transition metal supply, few effective methods of chalcogen feeding control were developed. Here we report a strategy of using active chalcogen monomer supply to grow high-quality TMDs in a robust and controllable manner, e.g., MoS2 monolayers perform representative photoluminescent circular helicity of ~92% and electronic mobility of ~42 cm2V−1s−1. Meanwhile, a uniform quaternary TMD alloy with three different anions, i.e., MoS2(1-x-y)Se2xTe2y, was accomplished. Our mechanism study revealed that the active chalcogen monomers can bind and diffuse freely on a TMD surface, which enables the effective nucleation, reaction, vacancy healing and alloy formation during the growth. Our work offers a degree of freedom for the controllable synthesis of 2D compounds and their alloys, benefiting the development of high-end devices with desired 2D materials.

Suggested Citation

  • Yonggang Zuo & Can Liu & Liping Ding & Ruixi Qiao & Jinpeng Tian & Chang Liu & Qinghe Wang & Guodong Xue & Yilong You & Quanlin Guo & Jinhuan Wang & Ying Fu & Kehai Liu & Xu Zhou & Hao Hong & Muhong W, 2022. "Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28628-7
    DOI: 10.1038/s41467-022-28628-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28628-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28628-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiadong Zhou & Junhao Lin & Xiangwei Huang & Yao Zhou & Yu Chen & Juan Xia & Hong Wang & Yu Xie & Huimei Yu & Jincheng Lei & Di Wu & Fucai Liu & Qundong Fu & Qingsheng Zeng & Chuang-Han Hsu & Changli , 2018. "A library of atomically thin metal chalcogenides," Nature, Nature, vol. 556(7701), pages 355-359, April.
    2. Prasana K. Sahoo & Shahriar Memaran & Yan Xin & Luis Balicas & Humberto R. Gutiérrez, 2018. "One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy," Nature, Nature, vol. 553(7686), pages 63-67, January.
    3. Ziliang Ye & Ting Cao & Kevin O’Brien & Hanyu Zhu & Xiaobo Yin & Yuan Wang & Steven G. Louie & Xiang Zhang, 2014. "Probing excitonic dark states in single-layer tungsten disulphide," Nature, Nature, vol. 513(7517), pages 214-218, September.
    4. Jinhua Hong & Zhixin Hu & Matt Probert & Kun Li & Danhui Lv & Xinan Yang & Lin Gu & Nannan Mao & Qingliang Feng & Liming Xie & Jin Zhang & Dianzhong Wu & Zhiyong Zhang & Chuanhong Jin & Wei Ji & Xixia, 2015. "Exploring atomic defects in molybdenum disulphide monolayers," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
    5. Abhay Shivayogimath & Joachim Dahl Thomsen & David M. A. Mackenzie & Mathias Geisler & Raluca-Maria Stan & Ann Julie Holt & Marco Bianchi & Andrea Crovetto & Patrick R. Whelan & Alexandra Carvalho & A, 2019. "A universal approach for the synthesis of two-dimensional binary compounds," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wangwang Zhang & Kelechi Uwakwe & Jingting Hu & Yan Wei & Juntong Zhu & Wu Zhou & Chao Ma & Liang Yu & Rui Huang & Dehui Deng, 2024. "Ambient-condition acetylene hydrogenation to ethylene over WS2-confined atomic Pd sites," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Wan & En Li & Zhihao Yu & Jing-Kai Huang & Ming-Yang Li & Ang-Sheng Chou & Yi-Te Lee & Chien-Ju Lee & Hung-Chang Hsu & Qin Zhan & Areej Aljarb & Jui-Han Fu & Shao-Pin Chiu & Xinran Wang & Juhn-Jong, 2022. "Low-defect-density WS2 by hydroxide vapor phase deposition," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Lutao Li & Junjie Yao & Juntong Zhu & Yuan Chen & Chen Wang & Zhicheng Zhou & Guoxiang Zhao & Sihan Zhang & Ruonan Wang & Jiating Li & Xiangyi Wang & Zheng Lu & Lingbo Xiao & Qiang Zhang & Guifu Zou, 2023. "Colloid driven low supersaturation crystallization for atomically thin Bismuth halide perovskite," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Xuezhi Ma & Kaushik Kudtarkar & Yixin Chen & Preston Cunha & Yuan Ma & Kenji Watanabe & Takashi Taniguchi & Xiaofeng Qian & M. Cynthia Hipwell & Zi Jing Wong & Shoufeng Lan, 2022. "Coherent momentum control of forbidden excitons," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Yanfei Zhao & Mukesh Tripathi & Kristiāns Čerņevičs & Ahmet Avsar & Hyun Goo Ji & Juan Francisco Gonzalez Marin & Cheol-Yeon Cheon & Zhenyu Wang & Oleg V. Yazyev & Andras Kis, 2023. "Electrical spectroscopy of defect states and their hybridization in monolayer MoS2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Lu Li & Qinqin Wang & Fanfan Wu & Qiaoling Xu & Jinpeng Tian & Zhiheng Huang & Qinghe Wang & Xuan Zhao & Qinghua Zhang & Qinkai Fan & Xiuzhen Li & Yalin Peng & Yangkun Zhang & Kunshan Ji & Aomiao Zhi , 2024. "Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Zhongqiang Chen & Hongsong Qiu & Xinjuan Cheng & Jizhe Cui & Zuanming Jin & Da Tian & Xu Zhang & Kankan Xu & Ruxin Liu & Wei Niu & Liqi Zhou & Tianyu Qiu & Yequan Chen & Caihong Zhang & Xiaoxiang Xi &, 2024. "Defect-induced helicity dependent terahertz emission in Dirac semimetal PtTe2 thin films," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Jie Xu & Xiong-Xiong Xue & Gonglei Shao & Changfei Jing & Sheng Dai & Kun He & Peipei Jia & Shun Wang & Yifei Yuan & Jun Luo & Jun Lu, 2023. "Atomic-level polarization in electric fields of defects for electrocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Juntao Zhang & Xiaozhi Liu & Yujin Ji & Xuerui Liu & Dong Su & Zhongbin Zhuang & Yu-Chung Chang & Chih-Wen Pao & Qi Shao & Zhiwei Hu & Xiaoqing Huang, 2023. "Atomic-thick metastable phase RhMo nanosheets for hydrogen oxidation catalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Yeonghun Lee & Yaoqiao Hu & Xiuyao Lang & Dongwook Kim & Kejun Li & Yuan Ping & Kai-Mei C. Fu & Kyeongjae Cho, 2022. "Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Yuting Li & Haoran Kong & Jin Yan & Qinhuan Wang & Xiang Liu & Mingxue Xiang & Yu Wang, 2024. "Large-scale conformal synthesis of one-dimensional MAX phases," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Song Li & Gergő Thiering & Péter Udvarhelyi & Viktor Ivády & Adam Gali, 2022. "Carbon defect qubit in two-dimensional WS2," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    12. Jian Zhou & Chunchen Zhang & Li Shi & Xiaoqing Chen & Tae Soo Kim & Minseung Gyeon & Jian Chen & Jinlan Wang & Linwei Yu & Xinran Wang & Kibum Kang & Emanuele Orgiu & Paolo Samorì & Kenji Watanabe & T, 2022. "Non-invasive digital etching of van der Waals semiconductors," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Thushani Silva & Mirette Fawzy & Amirhossein Hasani & Hamidreza Ghanbari & Amin Abnavi & Abdelrahman Askar & Yue Ling & Mohammad Reza Mohammadzadeh & Fahmid Kabir & Ribwar Ahmadi & Miriam Rosin & Kare, 2022. "Ultrasensitive rapid cytokine sensors based on asymmetric geometry two-dimensional MoS2 diodes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Mohammad Qorbani & Amr Sabbah & Ying-Ren Lai & Septia Kholimatussadiah & Shaham Quadir & Chih-Yang Huang & Indrajit Shown & Yi-Fan Huang & Michitoshi Hayashi & Kuei-Hsien Chen & Li-Chyong Chen, 2022. "Atomistic insights into highly active reconstructed edges of monolayer 2H-WSe2 photocatalyst," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Biao Qin & Muhammad Zeeshan Saeed & Qiuqiu Li & Manli Zhu & Ya Feng & Ziqi Zhou & Jingzhi Fang & Mongur Hossain & Zucheng Zhang & Yucheng Zhou & Ying Huangfu & Rong Song & Jingmei Tang & Bailing Li & , 2023. "General low-temperature growth of two-dimensional nanosheets from layered and nonlayered materials," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Swagata Acharya & Dimitar Pashov & Cedric Weber & Mark Schilfgaarde & Alexander I. Lichtenstein & Mikhail I. Katsnelson, 2023. "A theory for colors of strongly correlated electronic systems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Yecun Wu & Jingyang Wang & Yanbin Li & Jiawei Zhou & Bai Yang Wang & Ankun Yang & Lin-Wang Wang & Harold Y. Hwang & Yi Cui, 2022. "Observation of an intermediate state during lithium intercalation of twisted bilayer MoS2," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Qiuyang Li & Adam Alfrey & Jiaqi Hu & Nathanial Lydick & Eunice Paik & Bin Liu & Haiping Sun & Yang Lu & Ruoyu Wang & Stephen Forrest & Hui Deng, 2023. "Macroscopic transition metal dichalcogenides monolayers with uniformly high optical quality," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Yilei Wu & Chang-Feng Wang & Ming-Gang Ju & Qiangqiang Jia & Qionghua Zhou & Shuaihua Lu & Xinying Gao & Yi Zhang & Jinlan Wang, 2024. "Universal machine learning aided synthesis approach of two-dimensional perovskites in a typical laboratory," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Rui Wu & Jie Xu & Chuan-Lin Zhao & Xiao-Zhi Su & Xiao-Long Zhang & Ya-Rong Zheng & Feng-Yi Yang & Xu-Sheng Zheng & Jun-Fa Zhu & Jun Luo & Wei-Xue Li & Min-Rui Gao & Shu-Hong Yu, 2023. "Dopant triggered atomic configuration activates water splitting to hydrogen," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28628-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.