IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53880-4.html
   My bibliography  Save this article

Unveiling sulfur vacancy pairs as bright and stable color centers in monolayer WS2

Author

Listed:
  • Huacong Sun

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Qing Yang

    (Chinese Academy of Sciences)

  • Jianlin Wang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Mingchao Ding

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    Peking University)

  • Mouyang Cheng

    (Peking University)

  • Lei Liao

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Chen Cai

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Zitao Chen

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Xudan Huang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Zibing Wang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Zhi Xu

    (Songshan Lake Materials Laboratory)

  • Wenlong Wang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    Songshan Lake Materials Laboratory)

  • Kaihui Liu

    (Peking University
    Songshan Lake Materials Laboratory
    Peking University)

  • Lei Liu

    (Peking University
    Peking University)

  • Xuedong Bai

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    Songshan Lake Materials Laboratory)

  • Ji Chen

    (Peking University
    Peking University
    Peking University)

  • Sheng Meng

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    Songshan Lake Materials Laboratory)

  • Lifen Wang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    Songshan Lake Materials Laboratory)

Abstract

Color centers, arising from zero-dimensional defects, exploit quantum confinement to access internal electron quantum degrees of freedom, holding potential for quantum technologies. Despite intensive research, the structural origin of many color centers remains elusive. In this study, we employ in-situ cathodoluminescence scanning transmission electron microscopy combined with integrated differential phase contrast imaging to examine how defect configuration in tungsten sulfide determines color-center emission. Using an 80-kV accelerated electron beam, defects were deliberately produced, visualized, excited in situ and characterized in real time in monolayer WS2 within hBN|WS2 | hBN heterostructures at 100 K. These color centers were simultaneously measured by cathodoluminescence microscopy and differentiated by machine learning. Supported by DFT calculations, our results identified a crucial sulfur vacancy configuration organized into featured vacancy pairs, generating stable and bright luminescence at 660 nm. These findings elucidate the atomic-level structure-exciton relationship of color centers, advancing our understanding and quantum applications of defects in 2D materials.

Suggested Citation

  • Huacong Sun & Qing Yang & Jianlin Wang & Mingchao Ding & Mouyang Cheng & Lei Liao & Chen Cai & Zitao Chen & Xudan Huang & Zibing Wang & Zhi Xu & Wenlong Wang & Kaihui Liu & Lei Liu & Xuedong Bai & Ji , 2024. "Unveiling sulfur vacancy pairs as bright and stable color centers in monolayer WS2," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53880-4
    DOI: 10.1038/s41467-024-53880-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53880-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53880-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Artur Branny & Santosh Kumar & Raphaël Proux & Brian D Gerardot, 2017. "Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor," Nature Communications, Nature, vol. 8(1), pages 1-7, August.
    2. J. Klein & M. Lorke & M. Florian & F. Sigger & L. Sigl & S. Rey & J. Wierzbowski & J. Cerne & K. Müller & E. Mitterreiter & P. Zimmermann & T. Taniguchi & K. Watanabe & U. Wurstbauer & M. Kaniber & M., 2019. "Site-selectively generated photon emitters in monolayer MoS2 via local helium ion irradiation," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    3. Kamyar Parto & Shaimaa I. Azzam & Kaustav Banerjee & Galan Moody, 2021. "Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Carmen Palacios-Berraquero & Dhiren M. Kara & Alejandro R.-P. Montblanch & Matteo Barbone & Pawel Latawiec & Duhee Yoon & Anna K. Ott & Marko Loncar & Andrea C. Ferrari & Mete Atatüre, 2017. "Large-scale quantum-emitter arrays in atomically thin semiconductors," Nature Communications, Nature, vol. 8(1), pages 1-6, August.
    5. Jürgen Schieber & Dave Krinsley & Lee Riciputi, 2000. "Diagenetic origin of quartz silt in mudstones and implications for silica cycling," Nature, Nature, vol. 406(6799), pages 981-985, August.
    6. Hae Yeon Lee & Soumya Sarkar & Kate Reidy & Abinash Kumar & Julian Klein & Kenji Watanabe & Takashi Taniguchi & James M. LeBeau & Frances M. Ross & Silvija Gradečak, 2022. "Strong and Localized Luminescence from Interface Bubbles Between Stacked hBN Multilayers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Elmar Mitterreiter & Bruno Schuler & Ana Micevic & Daniel Hernangómez-Pérez & Katja Barthelmi & Katherine A. Cochrane & Jonas Kiemle & Florian Sigger & Julian Klein & Edward Wong & Edward S. Barnard &, 2021. "The role of chalcogen vacancies for atomic defect emission in MoS2," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    8. Xudan Huang & Lifen Wang & Keyang Liu & Lei Liao & Huacong Sun & Jianlin Wang & Xuezeng Tian & Zhi Xu & Wenlong Wang & Lei Liu & Ying Jiang & Ji Chen & Enge Wang & Xuedong Bai, 2023. "Tracking cubic ice at molecular resolution," Nature, Nature, vol. 617(7959), pages 86-91, May.
    9. Carmen Palacios-Berraquero & Matteo Barbone & Dhiren M. Kara & Xiaolong Chen & Ilya Goykhman & Duhee Yoon & Anna K. Ott & Jan Beitner & Kenji Watanabe & Takashi Taniguchi & Andrea C. Ferrari & Mete At, 2016. "Atomically thin quantum light-emitting diodes," Nature Communications, Nature, vol. 7(1), pages 1-6, December.
    10. Yanfei Zhao & Mukesh Tripathi & Kristiāns Čerņevičs & Ahmet Avsar & Hyun Goo Ji & Juan Francisco Gonzalez Marin & Cheol-Yeon Cheon & Zhenyu Wang & Oleg V. Yazyev & Andras Kis, 2023. "Electrical spectroscopy of defect states and their hybridization in monolayer MoS2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Iqbal Bakti Utama & Hongfei Zeng & Tumpa Sadhukhan & Anushka Dasgupta & S. Carin Gavin & Riddhi Ananth & Dmitry Lebedev & Wei Wang & Jia-Shiang Chen & Kenji Watanabe & Takashi Taniguchi & Tobin J. , 2023. "Chemomechanical modification of quantum emission in monolayer WSe2," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Luca Sortino & Panaiot G. Zotev & Catherine L. Phillips & Alistair J. Brash & Javier Cambiasso & Elena Marensi & A. Mark Fox & Stefan A. Maier & Riccardo Sapienza & Alexander I. Tartakovskii, 2021. "Bright single photon emitters with enhanced quantum efficiency in a two-dimensional semiconductor coupled with dielectric nano-antennas," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Huan Zhao & Michael T. Pettes & Yu Zheng & Han Htoon, 2021. "Site-controlled telecom-wavelength single-photon emitters in atomically-thin MoTe2," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    4. Artem N. Abramov & Igor Y. Chestnov & Ekaterina S. Alimova & Tatiana Ivanova & Ivan S. Mukhin & Dmitry N. Krizhanovskii & Ivan A. Shelykh & Ivan V. Iorsh & Vasily Kravtsov, 2023. "Photoluminescence imaging of single photon emitters within nanoscale strain profiles in monolayer WSe2," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Emanuil S. Yanev & Thomas P. Darlington & Sophia A. Ladyzhets & Matthew C. Strasbourg & Chiara Trovatello & Song Liu & Daniel A. Rhodes & Kobi Hall & Aditya Sinha & Nicholas J. Borys & James C. Hone &, 2024. "Programmable nanowrinkle-induced room-temperature exciton localization in monolayer WSe2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Longlong Yang & Yu Yuan & Bowen Fu & Jingnan Yang & Danjie Dai & Shushu Shi & Sai Yan & Rui Zhu & Xu Han & Hancong Li & Zhanchun Zuo & Can Wang & Yuan Huang & Kuijuan Jin & Qihuang Gong & Xiulai Xu, 2023. "Revealing broken valley symmetry of quantum emitters in WSe2 with chiral nanocavities," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Gwangwoo Kim & Benjamin Huet & Christopher E. Stevens & Kiyoung Jo & Jeng-Yuan Tsai & Saiphaneendra Bachu & Meghan Leger & Seunguk Song & Mahfujur Rahaman & Kyung Yeol Ma & Nicholas R. Glavin & Hyeon , 2024. "Confinement of excited states in two-dimensional, in-plane, quantum heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Song Li & Gergő Thiering & Péter Udvarhelyi & Viktor Ivády & Adam Gali, 2022. "Carbon defect qubit in two-dimensional WS2," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    9. Wei Liu & Viktor Ivády & Zhi-Peng Li & Yuan-Ze Yang & Shang Yu & Yu Meng & Zhao-An Wang & Nai-Jie Guo & Fei-Fei Yan & Qiang Li & Jun-Feng Wang & Jin-Shi Xu & Xiao Liu & Zong-Quan Zhou & Yang Dong & Xi, 2022. "Coherent dynamics of multi-spin V $${}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$ B − center in hexagonal boron nitride," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Ryan J. Gelly & Dylan Renaud & Xing Liao & Benjamin Pingault & Stefan Bogdanovic & Giovanni Scuri & Kenji Watanabe & Takashi Taniguchi & Bernhard Urbaszek & Hongkun Park & Marko Lončar, 2022. "Probing dark exciton navigation through a local strain landscape in a WSe2 monolayer," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    11. Roberto Rosati & Robert Schmidt & Samuel Brem & Raül Perea-Causín & Iris Niehues & Johannes Kern & Johann A. Preuß & Robert Schneider & Steffen Michaelis de Vasconcellos & Rudolf Bratschitsch & Ermin , 2021. "Dark exciton anti-funneling in atomically thin semiconductors," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    12. Pablo Hernández López & Sebastian Heeg & Christoph Schattauer & Sviatoslav Kovalchuk & Abhijeet Kumar & Douglas J. Bock & Jan N. Kirchhof & Bianca Höfer & Kyrylo Greben & Denis Yagodkin & Lukas Linhar, 2022. "Strain control of hybridization between dark and localized excitons in a 2D semiconductor," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Feifei Xiang & Lysander Huberich & Preston A. Vargas & Riccardo Torsi & Jonas Allerbeck & Anne Marie Z. Tan & Chengye Dong & Pascal Ruffieux & Roman Fasel & Oliver Gröning & Yu-Chuan Lin & Richard G. , 2024. "Charge state-dependent symmetry breaking of atomic defects in transition metal dichalcogenides," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Yeonghun Lee & Yaoqiao Hu & Xiuyao Lang & Dongwook Kim & Kejun Li & Yuan Ping & Kai-Mei C. Fu & Kyeongjae Cho, 2022. "Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Jin Myung Kim & Kwang-Yong Jeong & Soyeong Kwon & Jae-Pil So & Michael Cai Wang & Peter Snapp & Hong-Gyu Park & SungWoo Nam, 2024. "Strained two-dimensional tungsten diselenide for mechanically tunable exciton transport," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Shuai Zhang & Baichang Li & Xinzhong Chen & Francesco L. Ruta & Yinming Shao & Aaron J. Sternbach & A. S. McLeod & Zhiyuan Sun & Lin Xiong & S. L. Moore & Xinyi Xu & Wenjing Wu & Sara Shabani & Lin Zh, 2022. "Nano-spectroscopy of excitons in atomically thin transition metal dichalcogenides," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Stuart J. Masson & Ana Asenjo-Garcia, 2022. "Universality of Dicke superradiance in arrays of quantum emitters," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    18. Xia Liu & Berke Erbas & Ana Conde-Rubio & Norma Rivano & Zhenyu Wang & Jin Jiang & Siiri Bienz & Naresh Kumar & Thibault Sohier & Marcos Penedo & Mitali Banerjee & Georg Fantner & Renato Zenobi & Nico, 2024. "Deterministic grayscale nanotopography to engineer mobilities in strained MoS2 FETs," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. N. Fang & Y. R. Chang & S. Fujii & D. Yamashita & M. Maruyama & Y. Gao & C. F. Fong & D. Kozawa & K. Otsuka & K. Nagashio & S. Okada & Y. K. Kato, 2024. "Room-temperature quantum emission from interface excitons in mixed-dimensional heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    20. Xufan Li & Samuel Wyss & Emanuil Yanev & Qing-Jie Li & Shuang Wu & Yongwen Sun & Raymond R. Unocic & Joseph Stage & Matthew Strasbourg & Lucas M. Sassi & Yingxin Zhu & Ju Li & Yang Yang & James Hone &, 2024. "Width-dependent continuous growth of atomically thin quantum nanoribbons from nanoalloy seeds in chalcogen vapor," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53880-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.