IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v567y2019i7747d10.1038_d41586-019-00793-8.html
   My bibliography  Save this article

How 2D semiconductors could extend Moore’s law

Author

Listed:
  • Ming-Yang Li
  • Sheng-Kai Su
  • H.-S. Philip Wong
  • Lain-Jong Li

Abstract

Incredibly thin transistors could deliver even more powerful computers if three research challenges can be solved, argue Ming-Yang Li and colleagues.

Suggested Citation

  • Ming-Yang Li & Sheng-Kai Su & H.-S. Philip Wong & Lain-Jong Li, 2019. "How 2D semiconductors could extend Moore’s law," Nature, Nature, vol. 567(7747), pages 169-170, March.
  • Handle: RePEc:nat:nature:v:567:y:2019:i:7747:d:10.1038_d41586-019-00793-8
    DOI: 10.1038/d41586-019-00793-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/d41586-019-00793-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/d41586-019-00793-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaosong Wu & Shaocong Wang & Wei Huang & Yu Dong & Zhongrui Wang & Weiguo Huang, 2023. "Wearable in-sensor reservoir computing using optoelectronic polymers with through-space charge-transport characteristics for multi-task learning," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Xia Liu & Berke Erbas & Ana Conde-Rubio & Norma Rivano & Zhenyu Wang & Jin Jiang & Siiri Bienz & Naresh Kumar & Thibault Sohier & Marcos Penedo & Mitali Banerjee & Georg Fantner & Renato Zenobi & Nico, 2024. "Deterministic grayscale nanotopography to engineer mobilities in strained MoS2 FETs," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Junzhu Li & Abdus Samad & Yue Yuan & Qingxiao Wang & Mohamed Nejib Hedhili & Mario Lanza & Udo Schwingenschlögl & Iwnetim Abate & Deji Akinwande & Zheng Liu & Bo Tian & Xixiang Zhang, 2024. "Single-crystal hBN Monolayers from Aligned Hexagonal Islands," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Mengshi Yu & Congwei Tan & Yuling Yin & Junchuan Tang & Xiaoyin Gao & Hongtao Liu & Feng Ding & Hailin Peng, 2024. "Integrated 2D multi-fin field-effect transistors," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Yi Wan & En Li & Zhihao Yu & Jing-Kai Huang & Ming-Yang Li & Ang-Sheng Chou & Yi-Te Lee & Chien-Ju Lee & Hung-Chang Hsu & Qin Zhan & Areej Aljarb & Jui-Han Fu & Shao-Pin Chiu & Xinran Wang & Juhn-Jong, 2022. "Low-defect-density WS2 by hydroxide vapor phase deposition," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Yanfei Zhao & Mukesh Tripathi & Kristiāns Čerņevičs & Ahmet Avsar & Hyun Goo Ji & Juan Francisco Gonzalez Marin & Cheol-Yeon Cheon & Zhenyu Wang & Oleg V. Yazyev & Andras Kis, 2023. "Electrical spectroscopy of defect states and their hybridization in monolayer MoS2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Lu Li & Qinqin Wang & Fanfan Wu & Qiaoling Xu & Jinpeng Tian & Zhiheng Huang & Qinghe Wang & Xuan Zhao & Qinghua Zhang & Qinkai Fan & Xiuzhen Li & Yalin Peng & Yangkun Zhang & Kunshan Ji & Aomiao Zhi , 2024. "Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:567:y:2019:i:7747:d:10.1038_d41586-019-00793-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.