IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35372-5.html
   My bibliography  Save this article

Quantification of gas-accessible microporosity in metal-organic framework glasses

Author

Listed:
  • Louis Frentzel-Beyme

    (Technische Universität Dortmund)

  • Pascal Kolodzeiski

    (Technische Universität Dortmund)

  • Jan-Benedikt Weiß

    (Technische Universität Dortmund)

  • Andreas Schneemann

    (Technische Universität Dresden)

  • Sebastian Henke

    (Technische Universität Dortmund)

Abstract

Metal-organic framework (MOF) glasses are a new class of glass materials with immense potential for applications ranging from gas separation to optics and solid electrolytes. Due to the inherent difficulty to determine the atomistic structure of amorphous glasses, the intrinsic structural porosity of MOF glasses is only poorly understood. Here, we investigate the porosity features (pore size and pore limiting diameter) of a series of prototypical MOF glass formers from the family of zeolitic imidazolate frameworks (ZIFs) and their corresponding glasses. CO2 sorption at 195 K allows quantifying the microporosity of these materials in their crystalline and glassy states, also providing excess to the micropore volume and the apparent density of the ZIF glasses. Additional hydrocarbon sorption data together with X-ray total scattering experiments prove that the porosity features of the ZIF glasses depend on the types of organic linkers. This allows formulating design principles for a targeted tuning of the intrinsic microporosity of MOF glasses. These principles are counterintuitive and contrary to those established for crystalline MOFs but show similarities to strategies previously developed for porous polymers.

Suggested Citation

  • Louis Frentzel-Beyme & Pascal Kolodzeiski & Jan-Benedikt Weiß & Andreas Schneemann & Sebastian Henke, 2022. "Quantification of gas-accessible microporosity in metal-organic framework glasses," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35372-5
    DOI: 10.1038/s41467-022-35372-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35372-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35372-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Omar M. Yaghi & Michael O'Keeffe & Nathan W. Ockwig & Hee K. Chae & Mohamed Eddaoudi & Jaheon Kim, 2003. "Reticular synthesis and the design of new materials," Nature, Nature, vol. 423(6941), pages 705-714, June.
    2. Thomas D. Bennett & Jin-Chong Tan & Yuanzheng Yue & Emma Baxter & Caterina Ducati & Nick J. Terrill & Hamish H. -M. Yeung & Zhongfu Zhou & Wenlin Chen & Sebastian Henke & Anthony K. Cheetham & G. Nevi, 2015. "Hybrid glasses from strong and fragile metal-organic framework liquids," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    3. Theany To & Søren S. Sørensen & Malwina Stepniewska & Ang Qiao & Lars R. Jensen & Mathieu Bauchy & Yuanzheng Yue & Morten M. Smedskjaer, 2020. "Fracture toughness of a metal–organic framework glass," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    4. Chao Zhou & Louis Longley & Andraž Krajnc & Glen J. Smales & Ang Qiao & Ilknur Erucar & Cara M. Doherty & Aaron W. Thornton & Anita J. Hill & Christopher W. Ashling & Omid T. Qazvini & Seok J. Lee & P, 2018. "Metal-organic framework glasses with permanent accessible porosity," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammadreza Beydaghdari & Fahimeh Hooriabad Saboor & Aziz Babapoor & Vikram V. Karve & Mehrdad Asgari, 2022. "Recent Advances in MOF-Based Adsorbents for Dye Removal from the Aquatic Environment," Energies, MDPI, vol. 15(6), pages 1-34, March.
    2. Li, Lirong & Jung, Han Sol & Lee, Jae Won & Kang, Yong Tae, 2022. "Review on applications of metal–organic frameworks for CO2 capture and the performance enhancement mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Raoof, Jahan-Bakhsh & Hosseini, Sayed Reza & Ojani, Reza & Mandegarzad, Sakineh, 2015. "MOF-derived Cu/nanoporous carbon composite and its application for electro-catalysis of hydrogen evolution reaction," Energy, Elsevier, vol. 90(P1), pages 1075-1081.
    4. Gordeeva, L.G. & Aristov, Yu.I., 2019. "Adsorptive heat storage and amplification: New cycles and adsorbents," Energy, Elsevier, vol. 167(C), pages 440-453.
    5. Karmakar, Avishek & Prabakaran, Vivekh & Zhao, Dan & Chua, Kian Jon, 2020. "A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat-transformation applications," Applied Energy, Elsevier, vol. 269(C).
    6. Chakrabortty, Sankha & Kumar, Ramesh & Nayak, Jayato & Jeon, Byong-Hun & Dargar, Shashi Kant & Tripathy, Suraj K. & Pal, Parimal & Ha, Geon-Soo & Kim, Kwang Ho & Jasiński, Michał, 2023. "Green synthesis of MeOH derivatives through in situ catalytic transformations of captured CO2 in a membrane integrated photo-microreactor system: A state-of-art review for carbon capture and utilizati," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    7. Wen-Long Xue & Guo-Qiang Li & Hui Chen & Yu-Chen Han & Li Feng & Lu Wang & Xiao-Ling Gu & Si-Yuan Hu & Yu-Heng Deng & Lei Tan & Martin T. Dove & Wei Li & Jiangwei Zhang & Hongliang Dong & Zhiqiang Che, 2024. "Melt-quenched glass formation of a family of metal-carboxylate frameworks," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Li, Qingmeng & Han, Ning & Chai, Jiali & Zhang, Wei & Du, Jiakai & Tian, Hao & Liu, Hao & Wang, Guoxiu & Tang, Bohejin, 2023. "Strategies to improve metal-organic frameworks and their derived oxides as lithium storage anode materials," Energy, Elsevier, vol. 282(C).
    9. Gordeeva, Larisa G. & Solovyeva, Marina V. & Sapienza, Alessio & Aristov, Yuri I., 2020. "Potable water extraction from the atmosphere: Potential of MOFs," Renewable Energy, Elsevier, vol. 148(C), pages 72-80.
    10. Pooja Sindhu & K. S. Ananthram & Anil Jain & Kartick Tarafder & Nirmalya Ballav, 2023. "Insulator-to-metal-like transition in thin films of a biological metal-organic framework," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Hong-Jing Zhu & Duan-Hui Si & Hui Guo & Ziao Chen & Rong Cao & Yuan-Biao Huang, 2024. "Oxygen-tolerant CO2 electroreduction over covalent organic frameworks via photoswitching control oxygen passivation strategy," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Tatsidjodoung, Parfait & Le Pierrès, Nolwenn & Luo, Lingai, 2013. "A review of potential materials for thermal energy storage in building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 327-349.
    13. Ryunosuke Hayashi & Shohei Tashiro & Masahiro Asakura & Shinya Mitsui & Mitsuhiko Shionoya, 2023. "Effector-dependent structural transformation of a crystalline framework with allosteric effects on molecular recognition ability," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Wenhe Xie & Yuan Ren & Fengluan Jiang & Xin-Yu Huang & Bingjie Yu & Jianhong Liu & Jichun Li & Keyu Chen & Yidong Zou & Bingwen Hu & Yonghui Deng, 2023. "Solvent-pair surfactants enabled assembly of clusters and copolymers towards programmed mesoporous metal oxides," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Chong-Chen Wang & Yuh-Shan Ho, 2016. "Research trend of metal–organic frameworks: a bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 481-513, October.
    16. Jyoti Shanker Pandey & Nicolas von Solms, 2022. "Metal–Organic Frameworks and Gas Hydrate Synergy: A Pandora’s Box of Unanswered Questions and Revelations," Energies, MDPI, vol. 16(1), pages 1-30, December.
    17. Minhyuk Kim & Hwa-Sub Lee & Dong-Hyun Seo & Sung June Cho & Eun-chae Jeon & Hoi Ri Moon, 2024. "Melt-quenched carboxylate metal–organic framework glasses," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Onur Yildirim & Matteo Bonomo & Nadia Barbero & Cesare Atzori & Bartolomeo Civalleri & Francesca Bonino & Guido Viscardi & Claudia Barolo, 2020. "Application of Metal-Organic Frameworks and Covalent Organic Frameworks as (Photo)Active Material in Hybrid Photovoltaic Technologies," Energies, MDPI, vol. 13(21), pages 1-48, October.
    19. Adam F. Sapnik & Irene Bechis & Alice M. Bumstead & Timothy Johnson & Philip A. Chater & David A. Keen & Kim E. Jelfs & Thomas D. Bennett, 2022. "Multivariate analysis of disorder in metal–organic frameworks," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Chengjun Kang & Kuiwei Yang & Zhaoqiang Zhang & Adam K. Usadi & David C. Calabro & Lisa Saunders Baugh & Yuxiang Wang & Jianwen Jiang & Xiaodong Zou & Zhehao Huang & Dan Zhao, 2022. "Growing single crystals of two-dimensional covalent organic frameworks enabled by intermediate tracing study," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35372-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.