IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40091-6.html
   My bibliography  Save this article

Effector-dependent structural transformation of a crystalline framework with allosteric effects on molecular recognition ability

Author

Listed:
  • Ryunosuke Hayashi

    (The University of Tokyo)

  • Shohei Tashiro

    (The University of Tokyo)

  • Masahiro Asakura

    (The University of Tokyo)

  • Shinya Mitsui

    (The University of Tokyo)

  • Mitsuhiko Shionoya

    (The University of Tokyo)

Abstract

Structurally flexible porous crystals that combine high regularity and stimuli responsiveness have received attracted attention in connection with natural allostery found in regulatory systems of activity and function in biological systems. Porous crystals with molecular recognition sites in the inner pores are particularly promising for achieving elaborate functional control, where the local binding of effectors triggers their distortion to propagate throughout the structure. Here we report that the structure of a porous molecular crystal can be allosterically controlled by local adsorption of effectors within low-symmetry nanochannels with multiple molecular recognition sites. The exchange of effectors at the allosteric site triggers diverse conversion of the framework structure in an effector-dependent manner. In conjunction with the structural conversion, it is also possible to switch the molecular affinity at different recognition sites. These results may provide a guideline for the development of supramolecular materials with flexible and highly-ordered three-dimensional structures for biological applications.

Suggested Citation

  • Ryunosuke Hayashi & Shohei Tashiro & Masahiro Asakura & Shinya Mitsui & Mitsuhiko Shionoya, 2023. "Effector-dependent structural transformation of a crystalline framework with allosteric effects on molecular recognition ability," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40091-6
    DOI: 10.1038/s41467-023-40091-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40091-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40091-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexandros P. Katsoulidis & Dmytro Antypov & George F. S. Whitehead & Elliot J. Carrington & Dave J. Adams & Neil G. Berry & George R. Darling & Matthew S. Dyer & Matthew J. Rosseinsky, 2019. "Chemical control of structure and guest uptake by a conformationally mobile porous material," Nature, Nature, vol. 565(7738), pages 213-217, January.
    2. Qiuyi Huang & Wenlang Li & Zhu Mao & Lunjun Qu & Yang Li & Hao Zhang & Tao Yu & Zhiyong Yang & Juan Zhao & Yi Zhang & Matthew P. Aldred & Zhenguo Chi, 2019. "An exceptionally flexible hydrogen-bonded organic framework with large-scale void regulation and adaptive guest accommodation abilities," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    3. Omar M. Yaghi & Michael O'Keeffe & Nathan W. Ockwig & Hee K. Chae & Mohamed Eddaoudi & Jaheon Kim, 2003. "Reticular synthesis and the design of new materials," Nature, Nature, vol. 423(6941), pages 705-714, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yifan Gu & Jia-Jia Zheng & Ken-ichi Otake & Shigeyoshi Sakaki & Hirotaka Ashitani & Yoshiki Kubota & Shogo Kawaguchi & Ming-Shui Yao & Ping Wang & Ying Wang & Fengting Li & Susumu Kitagawa, 2023. "Soft corrugated channel with synergistic exclusive discrimination gating for CO2 recognition in gas mixture," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Mohammadreza Beydaghdari & Fahimeh Hooriabad Saboor & Aziz Babapoor & Vikram V. Karve & Mehrdad Asgari, 2022. "Recent Advances in MOF-Based Adsorbents for Dye Removal from the Aquatic Environment," Energies, MDPI, vol. 15(6), pages 1-34, March.
    3. Li, Lirong & Jung, Han Sol & Lee, Jae Won & Kang, Yong Tae, 2022. "Review on applications of metal–organic frameworks for CO2 capture and the performance enhancement mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Raoof, Jahan-Bakhsh & Hosseini, Sayed Reza & Ojani, Reza & Mandegarzad, Sakineh, 2015. "MOF-derived Cu/nanoporous carbon composite and its application for electro-catalysis of hydrogen evolution reaction," Energy, Elsevier, vol. 90(P1), pages 1075-1081.
    5. Gordeeva, L.G. & Aristov, Yu.I., 2019. "Adsorptive heat storage and amplification: New cycles and adsorbents," Energy, Elsevier, vol. 167(C), pages 440-453.
    6. Chengjun Kang & Kuiwei Yang & Zhaoqiang Zhang & Adam K. Usadi & David C. Calabro & Lisa Saunders Baugh & Yuxiang Wang & Jianwen Jiang & Xiaodong Zou & Zhehao Huang & Dan Zhao, 2022. "Growing single crystals of two-dimensional covalent organic frameworks enabled by intermediate tracing study," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Yangyang Xu & Tu Sun & Tengwu Zeng & Xiangyu Zhang & Xuan Yao & Shan Liu & Zhaolin Shi & Wen Wen & Yingbo Zhao & Shan Jiang & Yanhang Ma & Yue-Biao Zhang, 2023. "Symmetry-breaking dynamics in a tautomeric 3D covalent organic framework," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Sirong Li & Zijun Zhou & Zuoxiu Tie & Bing Wang & Meng Ye & Lei Du & Ran Cui & Wei Liu & Cuihong Wan & Quanyi Liu & Sheng Zhao & Quan Wang & Yihong Zhang & Shuo Zhang & Huigang Zhang & Yan Du & Hui We, 2022. "Data-informed discovery of hydrolytic nanozymes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Qingju Wang & Jianbo Hu & Lifeng Yang & Zhaoqiang Zhang & Tian Ke & Xili Cui & Huabin Xing, 2022. "One-step removal of alkynes and propadiene from cracking gases using a multi-functional molecular separator," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Karmakar, Avishek & Prabakaran, Vivekh & Zhao, Dan & Chua, Kian Jon, 2020. "A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat-transformation applications," Applied Energy, Elsevier, vol. 269(C).
    11. Gordeeva, Larisa G. & Solovyeva, Marina V. & Aristov, Yuri I., 2016. "NH2-MIL-125 as a promising material for adsorptive heat transformation and storage," Energy, Elsevier, vol. 100(C), pages 18-24.
    12. J. Perego & Charl X. Bezuidenhout & I. Villa & F. Cova & R. Crapanzano & I. Frank & F. Pagano & N. Kratochwill & E. Auffray & S. Bracco & A. Vedda & C. Dujardin & P. E. Sozzani & F. Meinardi & A. Como, 2022. "Highly luminescent scintillating hetero-ligand MOF nanocrystals with engineered Stokes shift for photonic applications," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Chakrabortty, Sankha & Kumar, Ramesh & Nayak, Jayato & Jeon, Byong-Hun & Dargar, Shashi Kant & Tripathy, Suraj K. & Pal, Parimal & Ha, Geon-Soo & Kim, Kwang Ho & Jasiński, Michał, 2023. "Green synthesis of MeOH derivatives through in situ catalytic transformations of captured CO2 in a membrane integrated photo-microreactor system: A state-of-art review for carbon capture and utilizati," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    14. Zhi-Zhou Ma & Qiao-Hong Li & Zirui Wang & Zhi-Gang Gu & Jian Zhang, 2022. "Electrically regulating nonlinear optical limiting of metal-organic framework film," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Gordeeva, Larisa G. & Solovyeva, Marina V. & Sapienza, Alessio & Aristov, Yuri I., 2020. "Potable water extraction from the atmosphere: Potential of MOFs," Renewable Energy, Elsevier, vol. 148(C), pages 72-80.
    16. Jabadurai Jayapaul & Sanna Komulainen & Vladimir V. Zhivonitko & Jiří Mareš & Chandan Giri & Kari Rissanen & Perttu Lantto & Ville-Veikko Telkki & Leif Schröder, 2022. "Hyper-CEST NMR of metal organic polyhedral cages reveals hidden diastereomers with diverse guest exchange kinetics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Pooja Sindhu & K. S. Ananthram & Anil Jain & Kartick Tarafder & Nirmalya Ballav, 2023. "Insulator-to-metal-like transition in thin films of a biological metal-organic framework," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Lei Wei & Tu Sun & Zhaolin Shi & Zezhao Xu & Wen Wen & Shan Jiang & Yingbo Zhao & Yanhang Ma & Yue-Biao Zhang, 2022. "Guest-adaptive molecular sensing in a dynamic 3D covalent organic framework," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Jin-Peng Xue & Yang Hu & Bo Zhao & Zhi-Kun Liu & Jing Xie & Zi-Shuo Yao & Jun Tao, 2022. "A spin-crossover framework endowed with pore-adjustable behavior by slow structural dynamics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Hong-Jing Zhu & Duan-Hui Si & Hui Guo & Ziao Chen & Rong Cao & Yuan-Biao Huang, 2024. "Oxygen-tolerant CO2 electroreduction over covalent organic frameworks via photoswitching control oxygen passivation strategy," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40091-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.