IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-16382-7.html
   My bibliography  Save this article

Fracture toughness of a metal–organic framework glass

Author

Listed:
  • Theany To

    (Aalborg University)

  • Søren S. Sørensen

    (Aalborg University)

  • Malwina Stepniewska

    (Aalborg University)

  • Ang Qiao

    (Aalborg University)

  • Lars R. Jensen

    (Aalborg University)

  • Mathieu Bauchy

    (University of California)

  • Yuanzheng Yue

    (Aalborg University)

  • Morten M. Smedskjaer

    (Aalborg University)

Abstract

Metal-organic framework glasses feature unique thermal, structural, and chemical properties compared to traditional metallic, organic, and oxide glasses. So far, there is a lack of knowledge of their mechanical properties, especially toughness and strength, owing to the challenge in preparing large bulk glass samples for mechanical testing. However, a recently developed melting method enables fabrication of large bulk glass samples (>25 mm3) from zeolitic imidazolate frameworks. Here, fracture toughness (KIc) of a representative glass, namely ZIF-62 glass (Zn(C3H3N2)1.75(C7H5N2)0.25), is measured using single-edge precracked beam method and simulated using reactive molecular dynamics. KIc is determined to be ~0.1 MPa m0.5, which is even lower than that of brittle oxide glasses due to the preferential breakage of the weak coordinative bonds (Zn-N). The glass is found to exhibit an anomalous brittle-to-ductile transition behavior, considering its low fracture surface energy despite similar Poisson’s ratio to that of many ductile metallic and organic glasses.

Suggested Citation

  • Theany To & Søren S. Sørensen & Malwina Stepniewska & Ang Qiao & Lars R. Jensen & Mathieu Bauchy & Yuanzheng Yue & Morten M. Smedskjaer, 2020. "Fracture toughness of a metal–organic framework glass," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16382-7
    DOI: 10.1038/s41467-020-16382-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-16382-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-16382-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oksana Smirnova & Roman Sajzew & Sarah Jasmin Finkelmeyer & Teymur Asadov & Sayan Chattopadhyay & Torsten Wieduwilt & Aaron Reupert & Martin Presselt & Alexander Knebel & Lothar Wondraczek, 2024. "Micro-optical elements from optical-quality ZIF-62 hybrid glasses by hot imprinting," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Louis Frentzel-Beyme & Pascal Kolodzeiski & Jan-Benedikt Weiß & Andreas Schneemann & Sebastian Henke, 2022. "Quantification of gas-accessible microporosity in metal-organic framework glasses," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16382-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.