IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34062-6.html
   My bibliography  Save this article

Deciphering the atomic-scale structural origin for large dynamic electromechanical response in lead-free Bi0.5Na0.5TiO3-based relaxor ferroelectrics

Author

Listed:
  • Jie Yin

    (Sichuan University)

  • Xiaoming Shi

    (Xi’an Jiaotong University
    Beijing Institute of Technology)

  • Hong Tao

    (Sichuan University
    Southwest Minzu University)

  • Zhi Tan

    (Sichuan University)

  • Xiang Lv

    (Sichuan University)

  • Xiangdong Ding

    (Xi’an Jiaotong University)

  • Jun Sun

    (Xi’an Jiaotong University)

  • Yang Zhang

    (Instrumental Analysis Center of Xi’an Jiaotong University, Xi’an Jiaotong University)

  • Xingmin Zhang

    (Shanghai Institute of Applied Physics, Chinese Academy of Sciences)

  • Kui Yao

    (Technology and Research (A*STAR))

  • Jianguo Zhu

    (Sichuan University)

  • Houbing Huang

    (Beijing Institute of Technology)

  • Haijun Wu

    (Xi’an Jiaotong University)

  • Shujun Zhang

    (University of Wollongong)

  • Jiagang Wu

    (Sichuan University)

Abstract

Despite the extraordinary electromechanical properties of relaxor ferroelectrics, correlating their properties to underlying atomic-scale structures remains a decisive challenge for these “mess” systems. Here, taking the lead-free relaxor ferroelectric Bi0.5Na0.5TiO3-based system as an example, we decipher the atomic-scale structure and its relationship to the polar structure evolution and large dynamic electromechanical response, using the direct atomic-scale point-by-point correlation analysis. With judicious chemical modification, we demonstrate the increased defect concentration is the main driving force for deviating polarizations with high-angle walls, leading to the increased random field. Meanwhile, the main driving force for deviating polarizations with low-angle walls changes from the anti-phase oxygen octahedral tilting to the multidirectional A-O displacement, leading to the decreased anisotropy field. Benefiting from the competitive and synergetic equilibrium of anisotropic field versus random field, the facilitated polarization rotation and extension versus facilitated domain switching are identified to be responsible for the giant electromechanical response. These observations lay a foundation for understanding the “composition-structure-property” relationships in relaxor ferroelectric systems, guiding the design of functional materials for electromechanical applications.

Suggested Citation

  • Jie Yin & Xiaoming Shi & Hong Tao & Zhi Tan & Xiang Lv & Xiangdong Ding & Jun Sun & Yang Zhang & Xingmin Zhang & Kui Yao & Jianguo Zhu & Houbing Huang & Haijun Wu & Shujun Zhang & Jiagang Wu, 2022. "Deciphering the atomic-scale structural origin for large dynamic electromechanical response in lead-free Bi0.5Na0.5TiO3-based relaxor ferroelectrics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34062-6
    DOI: 10.1038/s41467-022-34062-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34062-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34062-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeong Rae Kim & Jinhyuk Jang & Kyoung-June Go & Se Young Park & Chang Jae Roh & John Bonini & Jinkwon Kim & Han Gyeol Lee & Karin M. Rabe & Jong Seok Lee & Si-Young Choi & Tae Won Noh & Daesu Lee, 2020. "Stabilizing hidden room-temperature ferroelectricity via a metastable atomic distortion pattern," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. Jie Yin & Hongxiang Zong & Hong Tao & Xuefei Tao & Haijun Wu & Yang Zhang & Li-Dong Zhao & Xiangdong Ding & Jun Sun & Jianguo Zhu & Jiagang Wu & Stephen J. Pennycook, 2021. "Nanoscale bubble domains with polar topologies in bulk ferroelectrics," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Fei Li & Shujun Zhang & Tiannan Yang & Zhuo Xu & Nan Zhang & Gang Liu & Jianjun Wang & Jianli Wang & Zhenxiang Cheng & Zuo-Guang Ye & Jun Luo & Thomas R. Shrout & Long-Qing Chen, 2016. "The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
    4. M. Eremenko & V. Krayzman & A. Bosak & H. Y. Playford & K. W. Chapman & J. C. Woicik & B. Ravel & I. Levin, 2019. "Local atomic order and hierarchical polar nanoregions in a classical relaxor ferroelectric," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    5. Jie Yin & Hongxiang Zong & Hong Tao & Xuefei Tao & Haijun Wu & Yang Zhang & Li-Dong Zhao & Xiangdong Ding & Jun Sun & Jianguo Zhu & Jiagang Wu & Stephen J. Pennycook, 2021. "Author Correction: Nanoscale bubble domains with polar topologies in bulk ferroelectrics," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    6. Xiaoyi Gao & Zhenxiang Cheng & Zibin Chen & Yao Liu & Xiangyu Meng & Xu Zhang & Jianli Wang & Qinghu Guo & Bei Li & Huajun Sun & Qinfen Gu & Hua Hao & Qiang Shen & Jinsong Wu & Xiaozhou Liao & Simon P, 2021. "The mechanism for the enhanced piezoelectricity in multi-elements doped (K,Na)NbO3 ceramics," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Hiroyuki Takenaka & Ilya Grinberg & Shi Liu & Andrew M. Rappe, 2017. "Slush-like polar structures in single-crystal relaxors," Nature, Nature, vol. 546(7658), pages 391-395, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Liu & Xiaoming Shi & Yonghao Yao & Huajie Luo & Qiang Li & Houbing Huang & He Qi & Yuanpeng Zhang & Yang Ren & Shelly D. Kelly & Krystian Roleder & Joerg C. Neuefeind & Long-Qing Chen & Xianran Xi, 2023. "Emergence of high piezoelectricity from competing local polar order-disorder in relaxor ferroelectrics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Feng-Hui Gong & Yun-Long Tang & Yu-Jia Wang & Yu-Ting Chen & Bo Wu & Li-Xin Yang & Yin-Lian Zhu & Xiu-Liang Ma, 2023. "Absence of critical thickness for polar skyrmions with breaking the Kittel’s law," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Ibukun Olaniyan & Iurii Tikhonov & Valentin Väinö Hevelke & Sven Wiesner & Leifeng Zhang & Anna Razumnaya & Nikolay Cherkashin & Sylvie Schamm-Chardon & Igor Lukyanchuk & Dong-Jik Kim & Catherine Dubo, 2024. "Switchable topological polar states in epitaxial BaTiO3 nanoislands on silicon," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Vivasha Govinden & Peiran Tong & Xiangwei Guo & Qi Zhang & Sukriti Mantri & Mohammad Moein Seyfouri & Sergei Prokhorenko & Yousra Nahas & Yongjun Wu & Laurent Bellaiche & Tulai Sun & He Tian & Zijian , 2023. "Ferroelectric solitons crafted in epitaxial bismuth ferrite superlattices," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Sajid Husain & Isaac Harris & Guanhui Gao & Xinyan Li & Peter Meisenheimer & Chuqiao Shi & Pravin Kavle & Chi Hun Choi & Tae Yeon Kim & Deokyoung Kang & Piush Behera & Didier Perrodin & Hua Guo & Jame, 2024. "Low-temperature grapho-epitaxial La-substituted BiFeO3 on metallic perovskite," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Liya Yang & Houbing Huang & Zengzhe Xi & Limei Zheng & Shiqi Xu & Gang Tian & Yuzhi Zhai & Feifei Guo & Lingping Kong & Yonggang Wang & Weiming Lü & Long Yuan & Minglei Zhao & Haiwu Zheng & Gang Liu, 2022. "Simultaneously achieving giant piezoelectricity and record coercive field enhancement in relaxor-based ferroelectric crystals," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Wenxiao Shi & Jing Zhang & Bowen Yu & Jie Zheng & Mengqin Wang & Zhe Li & Jingying Zheng & Banggui Liu & Yunzhong Chen & Fengxia Hu & Baogen Shen & Yuansha Chen & Jirong Sun, 2024. "Improved conduction and orbital polarization in ultrathin LaNiO3 sublayer by modulating octahedron rotation in LaNiO3/CaTiO3 superlattices," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Ziwen Zhou & Shun Wang & Zhou Zhou & Yiqi Hu & Qiankun Li & Jinshuo Xue & Zhijian Feng & Qingyu Yan & Zhongshen Luo & Yuyan Weng & Rujun Tang & Xiaodong Su & Fengang Zheng & Kazuki Okamoto & Hiroshi F, 2023. "Unconventional polarization fatigue in van der Waals layered ferroelectric ionic conductor CuInP2S6," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Yongke Yan & Liwei D. Geng & Hairui Liu & Haoyang Leng & Xiaotian Li & Yu U. Wang & Shashank Priya, 2022. "Near-ideal electromechanical coupling in textured piezoelectric ceramics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Yaoxiang Jiang & Jianguo Niu & Cong Wang & Donglai Xue & Xiaohui Shi & Weibo Gao & Shifeng Zhao, 2024. "Experimental demonstration of tunable hybrid improper ferroelectricity in double-perovskite superlattice films," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Zhengqian Fu & Xuefeng Chen & Henchang Nie & Yanyu Liu & Jiawang Hong & Tengfei Hu & Ziyi Yu & Zhenqin Li & Linlin Zhang & Heliang Yao & Yuanhua Xia & Zhipeng Gao & Zheyi An & Nan Zhang & Fei Cao & He, 2022. "Atomic reconfiguration among tri-state transition at ferroelectric/antiferroelectric phase boundaries in Pb(Zr,Ti)O3," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Bo Wu & Lin Zhao & Jiaqing Feng & Yiting Zhang & Xilong Song & Jian Ma & Hong Tao & Ze Xu & Yi-Xuan Liu & Shidong Wang & Jingtong Lu & Fangyuan Zhu & Bing Han & Ke Wang, 2024. "Contribution of irreversible non-180° domain to performance for multiphase coexisted potassium sodium niobate ceramics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Yuqi Jiang & Mao-Hua Zhang & Chao-Feng Wu & Ze Xu & Zhao Li & Jing-Tong Lu & Hao-Feng Huang & Jia-Jun Zhou & Yi-Xuan Liu & Tianhang Zhou & Wen Gong & Ke Wang, 2024. "Low-field-driven large strain in lead zirconate titanium-based piezoceramics incorporating relaxor lead magnesium niobate for actuation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34062-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.