IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30451-z.html
   My bibliography  Save this article

Gigahertz free-space electro-optic modulators based on Mie resonances

Author

Listed:
  • Ileana-Cristina Benea-Chelmus

    (Harvard University
    École Polytechnique Fédérale de Lausanne (EPFL))

  • Sydney Mason

    (Harvard University
    Harvard College)

  • Maryna L. Meretska

    (Harvard University)

  • Delwin L. Elder

    (University of WAshington)

  • Dmitry Kazakov

    (Harvard University)

  • Amirhassan Shams-Ansari

    (Harvard University)

  • Larry R. Dalton

    (University of WAshington)

  • Federico Capasso

    (Harvard University)

Abstract

Electro-optic modulators are essential for sensing, metrology and telecommunications. Most target fiber applications. Instead, metasurface-based architectures that modulate free-space light at gigahertz (GHz) speeds can boost flat optics technology by microwave electronics for active optics, diffractive computing or optoelectronic control. Current realizations are bulky or have low modulation efficiencies. Here, we demonstrate a hybrid silicon-organic metasurface platform that leverages Mie resonances for efficient electro-optic modulation at GHz speeds. We exploit quasi bound states in the continuum (BIC) that provide narrow linewidth (Q = 550 at $${\lambda }_{{{{{{{{\rm{res}}}}}}}}}=1594$$ λ res = 1594 nm), light confinement to the non-linear material, tunability by design and voltage and GHz-speed electrodes. Key to the achieved modulation of $$\frac{{{\Delta }}T}{{T}_{\max }}=67 \%$$ Δ T T max = 67 % are molecules with r33 = 100 pm/V and optical field optimization for low-loss. We demonstrate DC tuning of the resonant frequency of quasi-BIC by $${{\Delta }}{\lambda }_{{{{{{{{\rm{res}}}}}}}}}=$$ Δ λ res = 11 nm, surpassing its linewidth, and modulation up to 5 GHz (fEO,−3dB = 3 GHz). Guided mode resonances tune by $${{\Delta }}{\lambda }_{{{{{{{{\rm{res}}}}}}}}}=$$ Δ λ res = 20 nm. Our hybrid platform may incorporate free-space nanostructures of any geometry or material, by application of the active layer post-fabrication.

Suggested Citation

  • Ileana-Cristina Benea-Chelmus & Sydney Mason & Maryna L. Meretska & Delwin L. Elder & Dmitry Kazakov & Amirhassan Shams-Ansari & Larry R. Dalton & Federico Capasso, 2022. "Gigahertz free-space electro-optic modulators based on Mie resonances," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30451-z
    DOI: 10.1038/s41467-022-30451-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30451-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30451-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guo-Wei Lu & Jianxun Hong & Feng Qiu & Andrew M. Spring & Tsubasa Kashino & Juro Oshima & Masa-aki Ozawa & Hideyuki Nawata & Shiyoshi Yokoyama, 2020. "High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200 Gbit s−1 for energy-efficient datacentres and harsh-environment applications," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. Pin Chieh Wu & Ragip A. Pala & Ghazaleh Kafaie Shirmanesh & Wen-Hui Cheng & Ruzan Sokhoyan & Meir Grajower & Muhammad Z. Alam & Duhyun Lee & Harry A. Atwater, 2019. "Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    3. M. Saad Bin-Alam & Orad Reshef & Yaryna Mamchur & M. Zahirul Alam & Graham Carlow & Jeremy Upham & Brian T. Sullivan & Jean-Michel Ménard & Mikko J. Huttunen & Robert W. Boyd & Ksenia Dolgaleva, 2021. "Ultra-high-Q resonances in plasmonic metasurfaces," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Christian Haffner & Daniel Chelladurai & Yuriy Fedoryshyn & Arne Josten & Benedikt Baeuerle & Wolfgang Heni & Tatsuhiko Watanabe & Tong Cui & Bojun Cheng & Soham Saha & Delwin L. Elder & Larry. R. Dal, 2018. "Low-loss plasmon-assisted electro-optic modulator," Nature, Nature, vol. 556(7702), pages 483-486, April.
    5. Freek Ruesink & Mohammad-Ali Miri & Andrea Alù & Ewold Verhagen, 2016. "Nonreciprocity and magnetic-free isolation based on optomechanical interactions," Nature Communications, Nature, vol. 7(1), pages 1-8, December.
    6. Ileana-Cristina Benea-Chelmus & Maryna L. Meretska & Delwin L. Elder & Michele Tamagnone & Larry R. Dalton & Federico Capasso, 2021. "Electro-optic spatial light modulator from an engineered organic layer," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. Cheng Wang & Mian Zhang & Xi Chen & Maxime Bertrand & Amirhassan Shams-Ansari & Sethumadhavan Chandrasekhar & Peter Winzer & Marko Lončar, 2018. "Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages," Nature, Nature, vol. 562(7725), pages 101-104, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyounghan Kwon & Tianzhe Zheng & Andrei Faraon, 2022. "Nano-electromechanical spatial light modulator enabled by asymmetric resonant dielectric metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyounghan Kwon & Tianzhe Zheng & Andrei Faraon, 2022. "Nano-electromechanical spatial light modulator enabled by asymmetric resonant dielectric metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Xuan-Kun Li & Jian-Xu Ma & Xiang-Yu Li & Jun-Jie Hu & Chuan-Yang Ding & Feng-Kai Han & Xiao-Min Guo & Xi Tan & Xian-Min Jin, 2024. "High-efficiency reinforcement learning with hybrid architecture photonic integrated circuit," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Jin Yao & Fangxing Lai & Yubin Fan & Yuhan Wang & Shih-Hsiu Huang & Borui Leng & Yao Liang & Rong Lin & Shufan Chen & Mu Ku Chen & Pin Chieh Wu & Shumin Xiao & Din Ping Tsai, 2024. "Nonlocal meta-lens with Huygens’ bound states in the continuum," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Ehsan Ordouie & Tianwei Jiang & Tingyi Zhou & Farzaneh A. Juneghani & Mahdi Eshaghi & Milad G. Vazimali & Sasan Fathpour & Bahram Jalali, 2023. "Differential phase-diversity electrooptic modulator for cancellation of fiber dispersion and laser noise," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Xinyu Ma & Zhaoyu Cai & Chijie Zhuang & Xiangdong Liu & Zhecheng Zhang & Kewei Liu & Bo Cao & Jinliang He & Changxi Yang & Chengying Bao & Rong Zeng, 2024. "Integrated microcavity electric field sensors using Pound-Drever-Hall detection," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Kazuma Taki & Naoki Sekine & Kouhei Watanabe & Yuto Miyatake & Tomohiro Akazawa & Hiroya Sakumoto & Kasidit Toprasertpong & Shinichi Takagi & Mitsuru Takenaka, 2024. "Nonvolatile optical phase shift in ferroelectric hafnium zirconium oxide," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Seou Choi & Yannick Salamin & Charles Roques-Carmes & Rumen Dangovski & Di Luo & Zhuo Chen & Michael Horodynski & Jamison Sloan & Shiekh Zia Uddin & Marin Soljačić, 2024. "Photonic probabilistic machine learning using quantum vacuum noise," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Okan Atalar & Raphaël Laer & Amir H. Safavi-Naeini & Amin Arbabian, 2022. "Longitudinal piezoelectric resonant photoelastic modulator for efficient intensity modulation at megahertz frequencies," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Chengying Bao & Zhiquan Yuan & Lue Wu & Myoung-Gyun Suh & Heming Wang & Qiang Lin & Kerry J. Vahala, 2021. "Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    10. Jack Hu & Fareeha Safir & Kai Chang & Sahil Dagli & Halleh B. Balch & John M. Abendroth & Jefferson Dixon & Parivash Moradifar & Varun Dolia & Malaya K. Sahoo & Benjamin A. Pinsky & Stefanie S. Jeffre, 2023. "Rapid genetic screening with high quality factor metasurfaces," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Mikhail Churaev & Rui Ning Wang & Annina Riedhauser & Viacheslav Snigirev & Terence Blésin & Charles Möhl & Miles H. Anderson & Anat Siddharth & Youri Popoff & Ute Drechsler & Daniele Caimi & Simon Hö, 2023. "A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Chao Meng & Paul C. V. Thrane & Fei Ding & Sergey I. Bozhevolnyi, 2022. "Full-range birefringence control with piezoelectric MEMS-based metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    13. Xinyi Zhu & Benjamin Crockett & Connor M. L. Rowe & Hao Sun & José Azaña, 2024. "Agile manipulation of the time-frequency distribution of high-speed electromagnetic waves," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Claudio U. Hail & Morgan Foley & Ruzan Sokhoyan & Lior Michaeli & Harry A. Atwater, 2023. "High quality factor metasurfaces for two-dimensional wavefront manipulation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Chao Xiang & Joel Guo & Warren Jin & Lue Wu & Jonathan Peters & Weiqiang Xie & Lin Chang & Boqiang Shen & Heming Wang & Qi-Fan Yang & David Kinghorn & Mario Paniccia & Kerry J. Vahala & Paul A. Morton, 2021. "High-performance lasers for fully integrated silicon nitride photonics," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    16. Shih-Hsiu Huang & Hsiu-Ping Su & Chao-Yun Chen & Yu-Chun Lin & Zijin Yang & Yuzhi Shi & Qinghua Song & Pin Chieh Wu, 2024. "Microcavity-assisted multi-resonant metasurfaces enabling versatile wavefront engineering," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Liu Qiu & Rishabh Sahu & William Hease & Georg Arnold & Johannes M. Fink, 2023. "Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Joshua C. Lederman & Weipeng Zhang & Thomas Ferreira Lima & Eric C. Blow & Simon Bilodeau & Bhavin J. Shastri & Paul R. Prucnal, 2023. "Real-time photonic blind interference cancellation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Dylan Renaud & Daniel Rimoli Assumpcao & Graham Joe & Amirhassan Shams-Ansari & Di Zhu & Yaowen Hu & Neil Sinclair & Marko Loncar, 2023. "Sub-1 Volt and high-bandwidth visible to near-infrared electro-optic modulators," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    20. Atsushi Shibukawa & Ryota Higuchi & Gookho Song & Hideharu Mikami & Yuki Sudo & Mooseok Jang, 2024. "Large-volume focus control at 10 MHz refresh rate via fast line-scanning amplitude-encoded scattering-assisted holography," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30451-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.