IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55321-8.html
   My bibliography  Save this article

TOPS-speed complex-valued convolutional accelerator for feature extraction and inference

Author

Listed:
  • Yunping Bai

    (Beijing University of Posts and Telecommunications)

  • Yifu Xu

    (Beijing University of Posts and Telecommunications)

  • Shifan Chen

    (Beijing University of Posts and Telecommunications)

  • Xiaotian Zhu

    (City University of Hong Kong)

  • Shuai Wang

    (Beijing University of Posts and Telecommunications)

  • Sirui Huang

    (Beijing University of Posts and Telecommunications)

  • Yuhang Song

    (Beijing University of Posts and Telecommunications)

  • Yixuan Zheng

    (Beijing University of Posts and Telecommunications)

  • Zhihui Liu

    (Beijing University of Posts and Telecommunications)

  • Sim Tan

    (Beihang University)

  • Roberto Morandotti

    (INRS-Énergie, Matériaux et Télécommunications)

  • Sai T. Chu

    (City University of Hong Kong)

  • Brent E. Little

    (QXP Technology Inc.)

  • David J. Moss

    (Swinburne University of Technology)

  • Xingyuan Xu

    (Beijing University of Posts and Telecommunications)

  • Kun Xu

    (Beijing University of Posts and Telecommunications)

Abstract

Complex-valued neural networks process both amplitude and phase information, in contrast to conventional artificial neural networks, achieving additive capabilities in recognizing phase-sensitive data inherent in wave-related phenomena. The ever-increasing data capacity and network scale place substantial demands on underlying computing hardware. In parallel with the successes and extensive efforts made in electronics, optical neuromorphic hardware is promising to achieve ultra-high computing performances due to its inherent analog architecture and wide bandwidth. Here, we report a complex-valued optical convolution accelerator operating at over 2 Tera operations per second (TOPS). With appropriately designed phasors we demonstrate its performance in the recognition of synthetic aperture radar (SAR) images captured by the Sentinel-1 satellite, which are inherently complex-valued and more intricate than what optical neural networks have previously processed. Experimental tests with 500 images yield an 83.8% accuracy, close to in-silico results. This approach facilitates feature extraction of phase-sensitive information, and represents a pivotal advance in artificial intelligence towards real-time, high-dimensional data analysis of complex and dynamic environments.

Suggested Citation

  • Yunping Bai & Yifu Xu & Shifan Chen & Xiaotian Zhu & Shuai Wang & Sirui Huang & Yuhang Song & Yixuan Zheng & Zhihui Liu & Sim Tan & Roberto Morandotti & Sai T. Chu & Brent E. Little & David J. Moss & , 2025. "TOPS-speed complex-valued convolutional accelerator for feature extraction and inference," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55321-8
    DOI: 10.1038/s41467-024-55321-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55321-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55321-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fernando S. Paolo & David Kroodsma & Jennifer Raynor & Tim Hochberg & Pete Davis & Jesse Cleary & Luca Marsaglia & Sara Orofino & Christian Thomas & Patrick Halpin, 2024. "Satellite mapping reveals extensive industrial activity at sea," Nature, Nature, vol. 625(7993), pages 85-91, January.
    2. Fernando S. Paolo & David Kroodsma & Jennifer Raynor & Tim Hochberg & Pete Davis & Jesse Cleary & Luca Marsaglia & Sara Orofino & Christian Thomas & Patrick Halpin, 2024. "Author Correction: Satellite mapping reveals extensive industrial activity at sea," Nature, Nature, vol. 626(8000), pages 15-15, February.
    3. Daniel Brunner & Miguel C. Soriano & Claudio R. Mirasso & Ingo Fischer, 2013. "Parallel photonic information processing at gigabyte per second data rates using transient states," Nature Communications, Nature, vol. 4(1), pages 1-7, June.
    4. J. Feldmann & N. Youngblood & M. Karpov & H. Gehring & X. Li & M. Stappers & M. Gallo & X. Fu & A. Lukashchuk & A. S. Raja & J. Liu & C. D. Wright & A. Sebastian & T. J. Kippenberg & W. H. P. Pernice , 2021. "Publisher Correction: Parallel convolutional processing using an integrated photonic tensor core," Nature, Nature, vol. 591(7849), pages 13-13, March.
    5. S. Ambrogio & P. Narayanan & A. Okazaki & A. Fasoli & C. Mackin & K. Hosokawa & A. Nomura & T. Yasuda & A. Chen & A. Friz & M. Ishii & J. Luquin & Y. Kohda & N. Saulnier & K. Brew & S. Choi & I. Ok & , 2023. "An analog-AI chip for energy-efficient speech recognition and transcription," Nature, Nature, vol. 620(7975), pages 768-775, August.
    6. H. H. Zhu & J. Zou & H. Zhang & Y. Z. Shi & S. B. Luo & N. Wang & H. Cai & L. X. Wan & B. Wang & X. D. Jiang & J. Thompson & X. S. Luo & X. H. Zhou & L. M. Xiao & W. Huang & L. Patrick & M. Gu & L. C., 2022. "Space-efficient optical computing with an integrated chip diffractive neural network," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Xiangyan Meng & Guojie Zhang & Nuannuan Shi & Guangyi Li & José Azaña & José Capmany & Jianping Yao & Yichen Shen & Wei Li & Ninghua Zhu & Ming Li, 2023. "Compact optical convolution processing unit based on multimode interference," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Bowen Bai & Qipeng Yang & Haowen Shu & Lin Chang & Fenghe Yang & Bitao Shen & Zihan Tao & Jing Wang & Shaofu Xu & Weiqiang Xie & Weiwen Zou & Weiwei Hu & John E. Bowers & Xingjun Wang, 2023. "Microcomb-based integrated photonic processing unit," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. H. Zhang & M. Gu & X. D. Jiang & J. Thompson & H. Cai & S. Paesani & R. Santagati & A. Laing & Y. Zhang & M. H. Yung & Y. Z. Shi & F. K. Muhammad & G. Q. Lo & X. S. Luo & B. Dong & D. L. Kwong & L. C., 2021. "An optical neural chip for implementing complex-valued neural network," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    10. Peng Yao & Huaqiang Wu & Bin Gao & Jianshi Tang & Qingtian Zhang & Wenqiang Zhang & J. Joshua Yang & He Qian, 2020. "Fully hardware-implemented memristor convolutional neural network," Nature, Nature, vol. 577(7792), pages 641-646, January.
    11. Sarah Webb, 2018. "Deep learning for biology," Nature, Nature, vol. 554(7693), pages 555-557, February.
    12. Tingzhao Fu & Yubin Zang & Yuyao Huang & Zhenmin Du & Honghao Huang & Chengyang Hu & Minghua Chen & Sigang Yang & Hongwei Chen, 2023. "Photonic machine learning with on-chip diffractive optics," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Changming Wu & Heshan Yu & Seokhyeong Lee & Ruoming Peng & Ichiro Takeuchi & Mo Li, 2021. "Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    14. Xingyuan Xu & Mengxi Tan & Bill Corcoran & Jiayang Wu & Andreas Boes & Thach G. Nguyen & Sai T. Chu & Brent E. Little & Damien G. Hicks & Roberto Morandotti & Arnan Mitchell & David J. Moss, 2021. "11 TOPS photonic convolutional accelerator for optical neural networks," Nature, Nature, vol. 589(7840), pages 44-51, January.
    15. Tianyu Wang & Shi-Yuan Ma & Logan G. Wright & Tatsuhiro Onodera & Brian C. Richard & Peter L. McMahon, 2022. "An optical neural network using less than 1 photon per multiplication," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    16. Yitong Chen & Maimaiti Nazhamaiti & Han Xu & Yao Meng & Tiankuang Zhou & Guangpu Li & Jingtao Fan & Qi Wei & Jiamin Wu & Fei Qiao & Lu Fang & Qionghai Dai, 2023. "All-analog photoelectronic chip for high-speed vision tasks," Nature, Nature, vol. 623(7985), pages 48-57, November.
    17. Phoebe M. R. DeVries & Fernanda Viégas & Martin Wattenberg & Brendan J. Meade, 2018. "Deep learning of aftershock patterns following large earthquakes," Nature, Nature, vol. 560(7720), pages 632-634, August.
    18. J. Feldmann & N. Youngblood & M. Karpov & H. Gehring & X. Li & M. Stappers & M. Gallo & X. Fu & A. Lukashchuk & A. S. Raja & J. Liu & C. D. Wright & A. Sebastian & T. J. Kippenberg & W. H. P. Pernice , 2021. "Parallel convolutional processing using an integrated photonic tensor core," Nature, Nature, vol. 589(7840), pages 52-58, January.
    19. Brian Stern & Xingchen Ji & Yoshitomo Okawachi & Alexander L. Gaeta & Michal Lipson, 2018. "Battery-operated integrated frequency comb generator," Nature, Nature, vol. 562(7727), pages 401-405, October.
    20. J. Feldmann & N. Youngblood & C. D. Wright & H. Bhaskaran & W. H. P. Pernice, 2019. "All-optical spiking neurosynaptic networks with self-learning capabilities," Nature, Nature, vol. 569(7755), pages 208-214, May.
    21. David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
    22. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    23. Cheng Wang & Mian Zhang & Xi Chen & Maxime Bertrand & Amirhassan Shams-Ansari & Sethumadhavan Chandrasekhar & Peter Winzer & Marko Lončar, 2018. "Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages," Nature, Nature, vol. 562(7725), pages 101-104, October.
    24. Maxwell Rowley & Pierre-Henry Hanzard & Antonio Cutrona & Hualong Bao & Sai T. Chu & Brent E. Little & Roberto Morandotti & David J. Moss & Gian-Luca Oppo & Juan Sebastian Totero Gongora & Marco Pecci, 2022. "Self-emergence of robust solitons in a microcavity," Nature, Nature, vol. 608(7922), pages 303-309, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen Zhou & Bowei Dong & Nikolaos Farmakidis & Xuan Li & Nathan Youngblood & Kairan Huang & Yuhan He & C. David Wright & Wolfram H. P. Pernice & Harish Bhaskaran, 2023. "In-memory photonic dot-product engine with electrically programmable weight banks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Dongliang Wang & Yikun Nie & Gaolei Hu & Hon Ki Tsang & Chaoran Huang, 2024. "Ultrafast silicon photonic reservoir computing engine delivering over 200 TOPS," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Junwei Cheng & Chaoran Huang & Jialong Zhang & Bo Wu & Wenkai Zhang & Xinyu Liu & Jiahui Zhang & Yiyi Tang & Hailong Zhou & Qiming Zhang & Min Gu & Jianji Dong & Xinliang Zhang, 2024. "Multimodal deep learning using on-chip diffractive optics with in situ training capability," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Xiangyan Meng & Guojie Zhang & Nuannuan Shi & Guangyi Li & José Azaña & José Capmany & Jianping Yao & Yichen Shen & Wei Li & Ninghua Zhu & Ming Li, 2023. "Compact optical convolution processing unit based on multimode interference," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Xuan-Kun Li & Jian-Xu Ma & Xiang-Yu Li & Jun-Jie Hu & Chuan-Yang Ding & Feng-Kai Han & Xiao-Min Guo & Xi Tan & Xian-Min Jin, 2024. "High-efficiency reinforcement learning with hybrid architecture photonic integrated circuit," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Jingwei Ling & Zhengdong Gao & Shixin Xue & Qili Hu & Mingxiao Li & Kaibo Zhang & Usman A. Javid & Raymond Lopez-Rios & Jeremy Staffa & Qiang Lin, 2024. "Electrically empowered microcomb laser," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Shaofu Xu & Jing Wang & Sicheng Yi & Weiwen Zou, 2022. "High-order tensor flow processing using integrated photonic circuits," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Zhongjin Lin & Bhavin J. Shastri & Shangxuan Yu & Jingxiang Song & Yuntao Zhu & Arman Safarnejadian & Wangning Cai & Yanmei Lin & Wei Ke & Mustafa Hammood & Tianye Wang & Mengyue Xu & Zibo Zheng & Moh, 2024. "120 GOPS Photonic tensor core in thin-film lithium niobate for inference and in situ training," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Chen-Guang Wang & Wuyue Xu & Chong Li & Lili Shi & Junliang Jiang & Tingting Guo & Wen-Cheng Yue & Tianyu Li & Ping Zhang & Yang-Yang Lyu & Jiazheng Pan & Xiuhao Deng & Ying Dong & Xuecou Tu & Sining , 2024. "Integrated and DC-powered superconducting microcomb," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    10. Chenduan Chen & Zhan Yang & Tao Wang & Yalun Wang & Kai Gao & Jiajia Wu & Jun Wang & Jianrong Qiu & Dezhi Tan, 2024. "Ultra-broadband all-optical nonlinear activation function enabled by MoTe2/optical waveguide integrated devices," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Alexander Song & Sai Nikhilesh Murty Kottapalli & Rahul Goyal & Bernhard Schölkopf & Peer Fischer, 2024. "Low-power scalable multilayer optoelectronic neural networks enabled with incoherent light," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Han Zhao & Bingzhao Li & Huan Li & Mo Li, 2022. "Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    13. Ziyu Zhan & Hao Wang & Qiang Liu & Xing Fu, 2024. "Photonic diffractive generators through sampling noises from scattering media," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Shihan Hong & Jiachen Wu & Yiwei Xie & Xiyuan Ke & Huan Li & Linyan Lyv & Yingying Peng & Qingrui Yao & Yaocheng Shi & Ke Wang & Leimeng Zhuang & Pan Wang & Daoxin Dai, 2025. "Versatile parallel signal processing with a scalable silicon photonic chip," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    15. Bowen Bai & Qipeng Yang & Haowen Shu & Lin Chang & Fenghe Yang & Bitao Shen & Zihan Tao & Jing Wang & Shaofu Xu & Weiqiang Xie & Weiwen Zou & Weiwei Hu & John E. Bowers & Xingjun Wang, 2023. "Microcomb-based integrated photonic processing unit," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Xiaoyun Yuan & Yong Wang & Zhihao Xu & Tiankuang Zhou & Lu Fang, 2023. "Training large-scale optoelectronic neural networks with dual-neuron optical-artificial learning," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Xuguang Zhang & Zixuan Zhou & Yijun Guo & Minxue Zhuang & Warren Jin & Bitao Shen & Yujun Chen & Jiahui Huang & Zihan Tao & Ming Jin & Ruixuan Chen & Zhangfeng Ge & Zhou Fang & Ning Zhang & Yadong Liu, 2024. "High-coherence parallelization in integrated photonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Mitsumasa Nakajima & Katsuma Inoue & Kenji Tanaka & Yasuo Kuniyoshi & Toshikazu Hashimoto & Kohei Nakajima, 2022. "Physical deep learning with biologically inspired training method: gradient-free approach for physical hardware," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Guangwei Cong & Noritsugu Yamamoto & Takashi Inoue & Yuriko Maegami & Morifumi Ohno & Shota Kita & Shu Namiki & Koji Yamada, 2022. "On-chip bacterial foraging training in silicon photonic circuits for projection-enabled nonlinear classification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Steven Becker & Dirk Englund & Birgit Stiller, 2024. "An optoacoustic field-programmable perceptron for recurrent neural networks," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55321-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.