IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48464-1.html
   My bibliography  Save this article

Giant magneto-photoluminescence at ultralow field in organic microcrystal arrays for on-chip optical magnetometer

Author

Listed:
  • Hong Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Baipeng Yin

    (Chinese Academy of Sciences)

  • Junli Bai

    (University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Xiao Wei

    (Chinese Academy of Sciences
    Ji Hua Laboratory Foshan)

  • Wenjin Huang

    (Hunan Normal University)

  • Qingda Chang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Hao Jia

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Rui Chen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yaxin Zhai

    (Hunan Normal University)

  • Yuchen Wu

    (University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Chuang Zhang

    (Chinese Academy of Sciences)

Abstract

Optical detection of magnetic field is appealing for integrated photonics; however, the light-matter interaction is usually weak at low field. Here we observe that the photoluminescence (PL) decreases by > 40% at 10 mT in rubrene microcrystals (RMCs) prepared by a capillary-bridge assembly method. The giant magneto-PL (MPL) relies on the singlet-triplet conversion involving triplet-triplet pairs, through the processes of singlet fission (SF) and triplet fusion (TF) during radiative decay. Importantly, the size of RMCs is critical for maximizing MPL as it influences on the photophysical processes of spin state conversion. The SF/TF process is quantified by measuring the prompt/delayed PL with time-resolved spectroscopies, which shows that the geminate SF/TF associated with triplet-triplet pairs are responsible for the giant MPL. Furthermore, the RMC-based magnetometer is constructed on an optical chip, which takes advantages of remarkable low-field sensitivity over a broad range of frequencies, representing a prototype of emerging opto-spintronic molecular devices.

Suggested Citation

  • Hong Wang & Baipeng Yin & Junli Bai & Xiao Wei & Wenjin Huang & Qingda Chang & Hao Jia & Rui Chen & Yaxin Zhai & Yuchen Wu & Chuang Zhang, 2024. "Giant magneto-photoluminescence at ultralow field in organic microcrystal arrays for on-chip optical magnetometer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48464-1
    DOI: 10.1038/s41467-024-48464-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48464-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48464-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shixing Yuan & Liao Chen & Ziwei Wang & Wentao Deng & Zhibo Hou & Chi Zhang & Yu Yu & Xiaojun Wu & Xinliang Zhang, 2021. "On-chip terahertz isolator with ultrahigh isolation ratios," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Jianpu Wang & Alexei Chepelianskii & Feng Gao & Neil C. Greenham, 2012. "Control of exciton spin statistics through spin polarization in organic optoelectronic devices," Nature Communications, Nature, vol. 3(1), pages 1-6, January.
    3. Cheng Gong & Lin Li & Zhenglu Li & Huiwen Ji & Alex Stern & Yang Xia & Ting Cao & Wei Bao & Chenzhe Wang & Yuan Wang & Z. Q. Qiu & R. J. Cava & Steven G. Louie & Jing Xia & Xiang Zhang, 2017. "Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals," Nature, Nature, vol. 546(7657), pages 265-269, June.
    4. Miaosheng Wang & Jie Lin & Yu-Che Hsiao & Xingyuan Liu & Bin Hu, 2019. "Investigating underlying mechanism in spectral narrowing phenomenon induced by microcavity in organic light emitting diodes," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    5. Ileana-Cristina Benea-Chelmus & Maryna L. Meretska & Delwin L. Elder & Michele Tamagnone & Larry R. Dalton & Federico Capasso, 2021. "Electro-optic spatial light modulator from an engineered organic layer," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chong Wang & Bo Wu & Yang Li & Shen Zhou & Conghui Wu & Tianyang Dong & Ying Jiang & Zihui Hua & Yupeng Song & Wei Wen & Jianxin Tian & Yongqiang Chai & Rui Wen & Chunru Wang, 2024. "Aggregation promotes charge separation in fullerene-indacenodithiophene dyad," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Maya Khela & Maciej Da̧browski & Safe Khan & Paul S. Keatley & Ivan Verzhbitskiy & Goki Eda & Robert J. Hicken & Hidekazu Kurebayashi & Elton J. G. Santos, 2023. "Laser-induced topological spin switching in a 2D van der Waals magnet," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Zefang Li & Huai Zhang & Guanqi Li & Jiangteng Guo & Qingping Wang & Ying Deng & Yue Hu & Xuange Hu & Can Liu & Minghui Qin & Xi Shen & Richeng Yu & Xingsen Gao & Zhimin Liao & Junming Liu & Zhipeng H, 2024. "Room-temperature sub-100 nm Néel-type skyrmions in non-stoichiometric van der Waals ferromagnet Fe3-xGaTe2 with ultrafast laser writability," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Benjamin Carey & Nils Kolja Wessling & Paul Steeger & Robert Schmidt & Steffen Michaelis de Vasconcellos & Rudolf Bratschitsch & Ashish Arora, 2024. "Giant Faraday rotation in atomically thin semiconductors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Guangyi Chen & Shaomian Qi & Jianqiao Liu & Di Chen & Jiongjie Wang & Shili Yan & Yu Zhang & Shimin Cao & Ming Lu & Shibing Tian & Kangyao Chen & Peng Yu & Zheng Liu & X. C. Xie & Jiang Xiao & Ryuichi, 2021. "Electrically switchable van der Waals magnon valves," Nature Communications, Nature, vol. 12(1), pages 1-5, December.
    6. Märta A. Tschudin & David A. Broadway & Patrick Siegwolf & Carolin Schrader & Evan J. Telford & Boris Gross & Jordan Cox & Adrien E. E. Dubois & Daniel G. Chica & Ricardo Rama-Eiroa & Elton J. G. Sant, 2024. "Imaging nanomagnetism and magnetic phase transitions in atomically thin CrSBr," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Freddie Hendriks & Rafael R. Rojas-Lopez & Bert Koopmans & Marcos H. D. Guimarães, 2024. "Electric control of optically-induced magnetization dynamics in a van der Waals ferromagnetic semiconductor," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Sarah Jenkins & Levente Rózsa & Unai Atxitia & Richard F. L. Evans & Kostya S. Novoselov & Elton J. G. Santos, 2022. "Breaking through the Mermin-Wagner limit in 2D van der Waals magnets," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Lebing Chen & Chengjie Mao & Jae-Ho Chung & Matthew B. Stone & Alexander I. Kolesnikov & Xiaoping Wang & Naoki Murai & Bin Gao & Olivier Delaire & Pengcheng Dai, 2022. "Anisotropic magnon damping by zero-temperature quantum fluctuations in ferromagnetic CrGeTe3," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    10. Yong Zhong & Cheng Peng & Haili Huang & Dandan Guan & Jinwoong Hwang & Kuan H. Hsu & Yi Hu & Chunjing Jia & Brian Moritz & Donghui Lu & Jun-Sik Lee & Jin-Feng Jia & Thomas P. Devereaux & Sung-Kwan Mo , 2023. "From Stoner to local moment magnetism in atomically thin Cr2Te3," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    11. Maciej Da̧browski & Shi Guo & Mara Strungaru & Paul S. Keatley & Freddie Withers & Elton J. G. Santos & Robert J. Hicken, 2022. "All-optical control of spin in a 2D van der Waals magnet," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Yongxi Ou & Wilson Yanez & Run Xiao & Max Stanley & Supriya Ghosh & Boyang Zheng & Wei Jiang & Yu-Sheng Huang & Timothy Pillsbury & Anthony Richardella & Chaoxing Liu & Tony Low & Vincent H. Crespi & , 2022. "ZrTe2/CrTe2: an epitaxial van der Waals platform for spintronics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Sihua Feng & Hengli Duan & Hao Tan & Fengchun Hu & Chaocheng Liu & Yao Wang & Zhi Li & Liang Cai & Yuyang Cao & Chao Wang & Zeming Qi & Li Song & Xuguang Liu & Zhihu Sun & Wensheng Yan, 2023. "Intrinsic room-temperature ferromagnetism in a two-dimensional semiconducting metal-organic framework," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Hongjun Xu & Ke Jia & Yuan Huang & Fanqi Meng & Qinghua Zhang & Yu Zhang & Chen Cheng & Guibin Lan & Jing Dong & Jinwu Wei & Jiafeng Feng & Congli He & Zhe Yuan & Mingliang Zhu & Wenqing He & Caihua W, 2023. "Electrical detection of spin pumping in van der Waals ferromagnetic Cr2Ge2Te6 with low magnetic damping," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Hyounghan Kwon & Tianzhe Zheng & Andrei Faraon, 2022. "Nano-electromechanical spatial light modulator enabled by asymmetric resonant dielectric metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    16. Guojing Hu & Changlong Wang & Shasha Wang & Ying Zhang & Yan Feng & Zhi Wang & Qian Niu & Zhenyu Zhang & Bin Xiang, 2023. "Long-range skin Josephson supercurrent across a van der Waals ferromagnet," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    17. Jun Cui & Emil Viñas Boström & Mykhaylo Ozerov & Fangliang Wu & Qianni Jiang & Jiun-Haw Chu & Changcun Li & Fucai Liu & Xiaodong Xu & Angel Rubio & Qi Zhang, 2023. "Chirality selective magnon-phonon hybridization and magnon-induced chiral phonons in a layered zigzag antiferromagnet," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Hangtian Wang & Haichang Lu & Zongxia Guo & Ang Li & Peichen Wu & Jing Li & Weiran Xie & Zhimei Sun & Peng Li & Héloïse Damas & Anna Maria Friedel & Sylvie Migot & Jaafar Ghanbaja & Luc Moreau & Yanni, 2023. "Interfacial engineering of ferromagnetism in wafer-scale van der Waals Fe4GeTe2 far above room temperature," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Xing Cheng & Zhixuan Cheng & Cong Wang & Minglai Li & Pingfan Gu & Shiqi Yang & Yanping Li & Kenji Watanabe & Takashi Taniguchi & Wei Ji & Lun Dai, 2021. "Light helicity detector based on 2D magnetic semiconductor CrI3," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    20. Shun Akatsuka & Sebastian Esser & Shun Okumura & Ryota Yambe & Rinsuke Yamada & Moritz M. Hirschmann & Seno Aji & Jonathan S. White & Shang Gao & Yoshichika Onuki & Taka-hisa Arima & Taro Nakajima & M, 2024. "Non-coplanar helimagnetism in the layered van-der-Waals metal DyTe3," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48464-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.