IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-55172-3.html
   My bibliography  Save this article

Ultrafast silicon photonic reservoir computing engine delivering over 200 TOPS

Author

Listed:
  • Dongliang Wang

    (The Chinese University of Hong Kong)

  • Yikun Nie

    (The Chinese University of Hong Kong)

  • Gaolei Hu

    (The Chinese University of Hong Kong)

  • Hon Ki Tsang

    (The Chinese University of Hong Kong)

  • Chaoran Huang

    (The Chinese University of Hong Kong)

Abstract

Reservoir computing (RC) is a powerful machine learning algorithm for information processing. Despite numerous optical implementations, its speed and scalability remain limited by the need to establish recurrent connections and achieve efficient optical nonlinearities. This work proposes a streamlined photonic RC design based on a new paradigm, called next-generation RC, which overcomes these limitations. Our design leads to a compact silicon photonic computing engine with an experimentally demonstrated processing speed of over 60 GHz. Experimental results demonstrate state-of-the-art performance in prediction, emulation, and classification tasks across various machine learning applications. Compared to traditional RC systems, our silicon photonic RC engine offers several key advantages, including no speed limitations, a compact footprint, and a high tolerance to fabrication errors. This work lays the foundation for ultrafast on-chip photonic RC, representing significant progress toward developing next-generation high-speed photonic computing and signal processing.

Suggested Citation

  • Dongliang Wang & Yikun Nie & Gaolei Hu & Hon Ki Tsang & Chaoran Huang, 2024. "Ultrafast silicon photonic reservoir computing engine delivering over 200 TOPS," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55172-3
    DOI: 10.1038/s41467-024-55172-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55172-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55172-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55172-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.