IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29204-9.html
   My bibliography  Save this article

Longitudinal piezoelectric resonant photoelastic modulator for efficient intensity modulation at megahertz frequencies

Author

Listed:
  • Okan Atalar

    (Stanford University)

  • Raphaël Laer

    (Stanford University
    Chalmers University of Technology)

  • Amir H. Safavi-Naeini

    (Stanford University)

  • Amin Arbabian

    (Stanford University)

Abstract

Intensity modulators are an essential component in optics for controlling free-space beams. Many applications require the intensity of a free-space beam to be modulated at a single frequency, including wide-field lock-in detection for sensitive measurements, mode-locking in lasers, and phase-shift time-of-flight imaging (LiDAR). Here, we report a new type of single frequency intensity modulator that we refer to as a longitudinal piezoelectric resonant photoelastic modulator. The modulator consists of a thin lithium niobate wafer coated with transparent surface electrodes. One of the fundamental acoustic modes of the modulator is excited through the surface electrodes, confining an acoustic standing wave to the electrode region. The modulator is placed between optical polarizers; light propagating through the modulator and polarizers is intensity modulated with a wide acceptance angle and record breaking modulation efficiency in the megahertz frequency regime. As an illustration of the potential of our approach, we show that the proposed modulator can be integrated with a standard image sensor to effectively convert it into a time-of-flight imaging system.

Suggested Citation

  • Okan Atalar & Raphaël Laer & Amir H. Safavi-Naeini & Amin Arbabian, 2022. "Longitudinal piezoelectric resonant photoelastic modulator for efficient intensity modulation at megahertz frequencies," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29204-9
    DOI: 10.1038/s41467-022-29204-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29204-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29204-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stefano Pirotta & Ngoc-Linh Tran & Arnaud Jollivet & Giorgio Biasiol & Paul Crozat & Jean-Michel Manceau & Adel Bousseksou & Raffaele Colombelli, 2021. "Fast amplitude modulation up to 1.5 GHz of mid-IR free-space beams at room-temperature," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    2. M. Saad Bin-Alam & Orad Reshef & Yaryna Mamchur & M. Zahirul Alam & Graham Carlow & Jeremy Upham & Brian T. Sullivan & Jean-Michel Ménard & Mikko J. Huttunen & Robert W. Boyd & Ksenia Dolgaleva, 2021. "Ultra-high-Q resonances in plasmonic metasurfaces," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Wei Ting Chen & Alexander Y. Zhu & Jared Sisler & Zameer Bharwani & Federico Capasso, 2019. "A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    4. Johann Riemensberger & Anton Lukashchuk & Maxim Karpov & Wenle Weng & Erwan Lucas & Junqiu Liu & Tobias J. Kippenberg, 2020. "Massively parallel coherent laser ranging using a soliton microcomb," Nature, Nature, vol. 581(7807), pages 164-170, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen-Guang Wang & Wuyue Xu & Chong Li & Lili Shi & Junliang Jiang & Tingting Guo & Wen-Cheng Yue & Tianyu Li & Ping Zhang & Yang-Yang Lyu & Jiazheng Pan & Xiuhao Deng & Ying Dong & Xuecou Tu & Sining , 2024. "Integrated and DC-powered superconducting microcomb," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Mingming Nie & Jonathan Musgrave & Kunpeng Jia & Jan Bartos & Shining Zhu & Zhenda Xie & Shu-Wei Huang, 2024. "Turnkey photonic flywheel in a microresonator-filtered laser," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Mingming Nie & Kunpeng Jia & Yijun Xie & Shining Zhu & Zhenda Xie & Shu-Wei Huang, 2022. "Synthesized spatiotemporal mode-locking and photonic flywheel in multimode mesoresonators," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Wenting Wang & Ping-Keng Lu & Abhinav Kumar Vinod & Deniz Turan & James F. McMillan & Hao Liu & Mingbin Yu & Dim-Lee Kwong & Mona Jarrahi & Chee Wei Wong, 2022. "Coherent terahertz radiation with 2.8-octave tunability through chip-scale photomixed microresonator optical parametric oscillation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Seyed Danial Hashemi & Sunil Mittal, 2024. "Floquet topological dissipative Kerr solitons and incommensurate frequency combs," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Yueqiang Hu & Yuting Jiang & Yi Zhang & Xing Yang & Xiangnian Ou & Ling Li & Xianghong Kong & Xingsi Liu & Cheng-Wei Qiu & Huigao Duan, 2023. "Asymptotic dispersion engineering for ultra-broadband meta-optics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Shengyuan Chang & Lidan Zhang & Yao Duan & Md Tarek Rahman & Abrar Islam & Xingjie Ni, 2024. "Achromatic metalenses for full visible spectrum with extended group delay control via dispersion-matched layers," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Corey A. Richards & Christian R. Ocier & Dajie Xie & Haibo Gao & Taylor Robertson & Lynford L. Goddard & Rasmus E. Christiansen & David G. Cahill & Paul V. Braun, 2023. "Hybrid achromatic microlenses with high numerical apertures and focusing efficiencies across the visible," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Jack Hu & Fareeha Safir & Kai Chang & Sahil Dagli & Halleh B. Balch & John M. Abendroth & Jefferson Dixon & Parivash Moradifar & Varun Dolia & Malaya K. Sahoo & Benjamin A. Pinsky & Stefanie S. Jeffre, 2023. "Rapid genetic screening with high quality factor metasurfaces," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Zhaoyi Li & Raphaël Pestourie & Joon-Suh Park & Yao-Wei Huang & Steven G. Johnson & Federico Capasso, 2022. "Inverse design enables large-scale high-performance meta-optics reshaping virtual reality," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Brandon Born & Sung-Hoon Lee & Jung-Hwan Song & Jeong Yub Lee & Woong Ko & Mark L. Brongersma, 2023. "Off-axis metasurfaces for folded flat optics," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Jin Yao & Fangxing Lai & Yubin Fan & Yuhan Wang & Shih-Hsiu Huang & Borui Leng & Yao Liang & Rong Lin & Shufan Chen & Mu Ku Chen & Pin Chieh Wu & Shumin Xiao & Din Ping Tsai, 2024. "Nonlocal meta-lens with Huygens’ bound states in the continuum," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Xuguang Zhang & Zixuan Zhou & Yijun Guo & Minxue Zhuang & Warren Jin & Bitao Shen & Yujun Chen & Jiahui Huang & Zihan Tao & Ming Jin & Ruixuan Chen & Zhangfeng Ge & Zhou Fang & Ning Zhang & Yadong Liu, 2024. "High-coherence parallelization in integrated photonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Jingwei Ling & Zhengdong Gao & Shixin Xue & Qili Hu & Mingxiao Li & Kaibo Zhang & Usman A. Javid & Raymond Lopez-Rios & Jeremy Staffa & Qiang Lin, 2024. "Electrically empowered microcomb laser," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Miles H. Anderson & Wenle Weng & Grigory Lihachev & Alexey Tikan & Junqiu Liu & Tobias J. Kippenberg, 2022. "Zero dispersion Kerr solitons in optical microresonators," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Ileana-Cristina Benea-Chelmus & Sydney Mason & Maryna L. Meretska & Delwin L. Elder & Dmitry Kazakov & Amirhassan Shams-Ansari & Larry R. Dalton & Federico Capasso, 2022. "Gigahertz free-space electro-optic modulators based on Mie resonances," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Grigory Lihachev & Wenle Weng & Junqiu Liu & Lin Chang & Joel Guo & Jijun He & Rui Ning Wang & Miles H. Anderson & Yang Liu & John E. Bowers & Tobias J. Kippenberg, 2022. "Platicon microcomb generation using laser self-injection locking," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Xiaohua Feng & Yayao Ma & Liang Gao, 2022. "Compact light field photography towards versatile three-dimensional vision," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Ruobing Qian & Kevin C. Zhou & Jingkai Zhang & Christian Viehland & Al-Hafeez Dhalla & Joseph A. Izatt, 2022. "Video-rate high-precision time-frequency multiplexed 3D coherent ranging," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Haoran Ren & Jaehyuck Jang & Chenhao Li & Andreas Aigner & Malte Plidschun & Jisoo Kim & Junsuk Rho & Markus A. Schmidt & Stefan A. Maier, 2022. "An achromatic metafiber for focusing and imaging across the entire telecommunication range," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29204-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.