Author
Listed:
- Xin Ge Zhang
(Southeast University)
- Ya Lun Sun
(Southeast University)
- Bingcheng Zhu
(Southeast University)
- Han Wei Tian
(Southeast University)
- Bo Yuan Wang
(Southeast University)
- Zaichen Zhang
(Southeast University
Southeast University
Purple Mountain Laboratories)
- Cheng-Wei Qiu
(National University of Singapore)
- Tie Jun Cui
(Southeast University
Suzhou Laboratory)
- Wei Xiang Jiang
(Southeast University
Southeast University
Purple Mountain Laboratories)
Abstract
Microwave-optical interaction and its effective utilization are vital technologies at the frontier of classical and quantum sciences for communication, sensing, and imaging. Typically, state-of-the-art microwave-to-optical converters are realized by fiber and circuit approaches with multiple processing steps, and external powers are necessary, which leads to many limitations. Here, we propose a programmable metasurface that can achieve direct and high-speed free-space microwave-to-laser conversion. Moreover, it supports reverse conversion, achieving bidirectional operations. The programmable metasurface converter is realized by integrating subwavelength microwave resonant structures, MS junction and photoelectric PN junction components together, without connecting any direct-current supplies to provide driving bias. We further demonstrate the enormous potentials of the metasurface converter in cross-media links and develop a full-duplex air-water wireless communication system. Experimental results show that the bidirectional real-time data transmissions and exchanges are established through the air-water boundary. This work represents a decisive step towards microwave-optical interconversion on wireless and battery-free interfaces.
Suggested Citation
Xin Ge Zhang & Ya Lun Sun & Bingcheng Zhu & Han Wei Tian & Bo Yuan Wang & Zaichen Zhang & Cheng-Wei Qiu & Tie Jun Cui & Wei Xiang Jiang, 2025.
"Wireless microwave-to-optical conversion via programmable metasurface without DC supply,"
Nature Communications, Nature, vol. 16(1), pages 1-10, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55940-9
DOI: 10.1038/s41467-025-55940-9
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55940-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.