IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29772-w.html
   My bibliography  Save this article

Protective effect of platinum nano-antioxidant and nitric oxide against hepatic ischemia-reperfusion injury

Author

Listed:
  • Jing Mu

    (Peking University Shenzhen Hospital)

  • Chunxiao Li

    (Tongji University)

  • Yu Shi

    (Peking University Shenzhen Hospital)

  • Guoyong Liu

    (Peking University Shenzhen Hospital)

  • Jianhua Zou

    (National University of Singapore
    National University of Singapore
    National University of Singapore)

  • Dong-Yang Zhang

    (Shenzhen University)

  • Chao Jiang

    (Shenzhen University)

  • Xiuli Wang

    (Tongji University)

  • Liangcan He

    (Harbin Institute of Technology)

  • Peng Huang

    (Shenzhen University)

  • Yuxin Yin

    (Peking University Shenzhen Hospital)

  • Xiaoyuan Chen

    (National University of Singapore
    National University of Singapore
    National University of Singapore)

Abstract

Therapeutic interventions of hepatic ischemia-reperfusion injury to attenuate liver dysfunction or multiple organ failure following liver surgery and transplantation remain limited. Here we present an innovative strategy by integrating a platinum nanoantioxidant and inducible nitric oxide synthase into the zeolitic imidazolate framework-8 based hybrid nanoreactor for effective prevention of ischemia-reperfusion injury. We show that platinum nanoantioxidant can scavenge excessive reactive oxygen species at the injury site and meanwhile generate oxygen for subsequent synthesis of nitric oxide under the catalysis of nitric oxide synthase. We find that such cascade reaction successfully achieves dual protection for the liver through reactive oxygen species clearance and nitric oxide regulation, enabling reduction of oxidative stress, inhibition of macrophage activation and neutrophil recruitment, and ensuring suppression of proinflammatory cytokines. The current work establishes a proof of concept of multifunctional nanotherapeutics against ischemia-reperfusion injury, which may provide a promising intervention solution in clinical use.

Suggested Citation

  • Jing Mu & Chunxiao Li & Yu Shi & Guoyong Liu & Jianhua Zou & Dong-Yang Zhang & Chao Jiang & Xiuli Wang & Liangcan He & Peng Huang & Yuxin Yin & Xiaoyuan Chen, 2022. "Protective effect of platinum nano-antioxidant and nitric oxide against hepatic ischemia-reperfusion injury," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29772-w
    DOI: 10.1038/s41467-022-29772-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29772-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29772-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Minfeng Huo & Liying Wang & Yu Chen & Jianlin Shi, 2017. "Tumor-selective catalytic nanomedicine by nanocatalyst delivery," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
    2. Zhao Zhao & Jinglin Fu & Soma Dhakal & Alexander Johnson-Buck & Minghui Liu & Ting Zhang & Neal W. Woodbury & Yan Liu & Nils G. Walter & Hao Yan, 2016. "Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion," Nature Communications, Nature, vol. 7(1), pages 1-9, April.
    3. Kelong Fan & Juqun Xi & Lei Fan & Peixia Wang & Chunhua Zhu & Yan Tang & Xiangdong Xu & Minmin Liang & Bing Jiang & Xiyun Yan & Lizeng Gao, 2018. "In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianbao Ye & Cheng Chen & Di Wang & Chengjie Huang & Zhiwen Yan & Yu Chen & Xian Jin & Xiuyuan Wang & Xianting Ding & Chengxing Shen, 2024. "Protective effects of Pt-N-C single-atom nanozymes against myocardial ischemia-reperfusion injury," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shan Lei & Jing Zhang & Nicholas Thomas Blum & Meng Li & Dong-Yang Zhang & Weimin Yin & Feng Zhao & Jing Lin & Peng Huang, 2022. "In vivo three-dimensional multispectral photoacoustic imaging of dual enzyme-driven cyclic cascade reaction for tumor catalytic therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Kaiyuan Wang & Qing Hong & Caixia Zhu & Yuan Xu & Wang Li & Ying Wang & Wenhao Chen & Xiang Gu & Xinghua Chen & Yanfeng Fang & Yanfei Shen & Songqin Liu & Yuanjian Zhang, 2024. "Metal-ligand dual-site single-atom nanozyme mimicking urate oxidase with high substrates specificity," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Yawen You & Qingqing Deng & Yibo Wang & Yanjuan Sang & Guangming Li & Fang Pu & Jinsong Ren & Xiaogang Qu, 2022. "DNA-based platform for efficient and precisely targeted bioorthogonal catalysis in living systems," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Xin Yuan & Xiaoling Wu & Jun Xiong & Binhang Yan & Ruichen Gao & Shuli Liu & Minhua Zong & Jun Ge & Wenyong Lou, 2023. "Hydrolase mimic via second coordination sphere engineering in metal-organic frameworks for environmental remediation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Ke Chen & Guo Li & Xiaoqun Gong & Qinjuan Ren & Junying Wang & Shuang Zhao & Ling Liu & Yuxing Yan & Qingshan Liu & Yang Cao & Yaoyao Ren & Qiong Qin & Qi Xin & Shu-Lin Liu & Peiyu Yao & Bo Zhang & Ji, 2024. "Atomic-scale strain engineering of atomically resolved Pt clusters transcending natural enzymes," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Long Ma & Jia-Jia Zheng & Ning Zhou & Ruofei Zhang & Long Fang & Yili Yang & Xingfa Gao & Chunying Chen & Xiyun Yan & Kelong Fan, 2024. "A natural biogenic nanozyme for scavenging superoxide radicals," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Yuhao Weng & Huihong Chen & Xiaoqian Chen & Huilin Yang & Chia-Hung Chen & Hongliang Tan, 2022. "Adenosine triphosphate-activated prodrug system for on-demand bacterial inactivation and wound disinfection," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Vishal Maingi & Zhao Zhang & Chris Thachuk & Namita Sarraf & Edwin R. Chapman & Paul W. K. Rothemund, 2023. "Digital nanoreactors to control absolute stoichiometry and spatiotemporal behavior of DNA receptors within lipid bilayers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Jiefei Wang & Ping Shangguan & Xiaoyu Chen & Yong Zhong & Ming Lin & Mu He & Yisheng Liu & Yuan Zhou & Xiaobin Pang & Lulu Han & Mengya Lu & Xiao Wang & Yang Liu & Huiqing Yang & Jingyun Chen & Chenhu, 2024. "A one-two punch targeting reactive oxygen species and fibril for rescuing Alzheimer’s disease," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Liu-Chun Wang & Pei-Yu Chiou & Ya-Ping Hsu & Chin-Lai Lee & Chih-Hsuan Hung & Yi-Hsuan Wu & Wen-Jyun Wang & Gia-Ling Hsieh & Ying-Chi Chen & Li-Chan Chang & Wen-Pin Su & Divinah Manoharan & Min-Chiao , 2023. "Prussian blue analog with separated active sites to catalyze water driven enhanced catalytic treatments," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    11. Qing Hong & Hong Yang & Yanfeng Fang & Wang Li & Caixia Zhu & Zhuang Wang & Sicheng Liang & Xuwen Cao & Zhixin Zhou & Yanfei Shen & Songqin Liu & Yuanjian Zhang, 2023. "Adaptable graphitic C6N6-based copper single-atom catalyst for intelligent biosensing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Shichao Xu & Haifeng Wu & Siyuan Liu & Peidong Du & Hui Wang & Haijun Yang & Wenjie Xu & Shuangming Chen & Li Song & Jikun Li & Xinghua Shi & Zhen-Gang Wang, 2023. "A supramolecular metalloenzyme possessing robust oxidase-mimetic catalytic function," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Yong Kang & Zhuo Mao & Ying Wang & Chao Pan & Meitong Ou & Hanjie Zhang & Weiwei Zeng & Xiaoyuan Ji, 2022. "Design of a two-dimensional interplanar heterojunction for catalytic cancer therapy," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    14. Songjing Zhong & Zeyu Zhang & Qinyu Zhao & Zhaoyang Yue & Cheng Xiong & Genglin Chen & Jie Wang & Linlin Li, 2024. "Lattice expansion in ruthenium nanozymes improves catalytic activity and electro-responsiveness for boosting cancer therapy," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Hanjie Zhang & Yitong Zhang & Yushi Zhang & Hanyue Li & Meitong Ou & Yongkang Yu & Fan Zhang & Huijuan Yin & Zhuo Mao & Lin Mei, 2024. "Catalytic activity of violet phosphorus-based nanosystems and the role of metabolites in tumor therapy," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Shaofang Zhang & Yonghui Li & Si Sun & Ling Liu & Xiaoyu Mu & Shuhu Liu & Menglu Jiao & Xinzhu Chen & Ke Chen & Huizhen Ma & Tuo Li & Xiaoyu Liu & Hao Wang & Jianning Zhang & Jiang Yang & Xiao-Dong Zh, 2022. "Single-atom nanozymes catalytically surpassing naturally occurring enzymes as sustained stitching for brain trauma," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    17. Xiangqin Meng & Huizhen Fan & Lei Chen & Jiuyang He & Chaoyi Hong & Jiaying Xie & Yinyin Hou & Kaidi Wang & Xingfa Gao & Lizeng Gao & Xiyun Yan & Kelong Fan, 2024. "Ultrasmall metal alloy nanozymes mimicking neutrophil enzymatic cascades for tumor catalytic therapy," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29772-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.