IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-55163-4.html
   My bibliography  Save this article

Microenvironmental modulation breaks intrinsic pH limitations of nanozymes to boost their activities

Author

Listed:
  • Tong Li

    (Nanjing University)

  • Xiaoyu Wang

    (Nanjing University)

  • Yuting Wang

    (Nanjing University)

  • Yihong Zhang

    (Nanjing University)

  • Sirong Li

    (Nanjing University)

  • Wanling Liu

    (Nanjing University)

  • Shujie Liu

    (Nanjing University)

  • Yufeng Liu

    (Nanjing University)

  • Hang Xing

    (Hunan University)

  • Ken-ichi Otake

    (Kyoto University)

  • Susumu Kitagawa

    (Kyoto University)

  • Jiangjiexing Wu

    (Nanjing University
    Tianjin University)

  • Hao Dong

    (Nanjing University
    Nanjing University
    Nanjing University
    Nanjing University)

  • Hui Wei

    (Nanjing University
    Nanjing University
    Nanjing University)

Abstract

Functional nanomaterials with enzyme-mimicking activities, termed as nanozymes, have found wide applications in various fields. However, the deviation between the working and optimal pHs of nanozymes has been limiting their practical applications. Here we develop a strategy to modulate the microenvironmental pHs of metal–organic framework (MOF) nanozymes by confining polyacids or polybases (serving as Brønsted acids or bases). The confinement of poly(acrylic acid) (PAA) into the channels of peroxidase-mimicking PCN-222-Fe (PCN = porous coordination network) nanozyme lowers its microenvironmental pH, enabling it to perform its best activity at pH 7.4 and to solve pH mismatch in cascade systems coupled with acid-denatured oxidases. Experimental investigations and molecular dynamics simulations reveal that PAA not only donates protons but also holds protons through the salt bridges between hydroniums and deprotonated carboxyl groups in neutral pH condition. Therefore, the confinement of poly(ethylene imine) increases the microenvironmental pH, leading to the enhanced hydrolase-mimicking activity of MOF nanozymes. This strategy is expected to pave a promising way for designing high-performance nanozymes and nanocatalysts for practical applications.

Suggested Citation

  • Tong Li & Xiaoyu Wang & Yuting Wang & Yihong Zhang & Sirong Li & Wanling Liu & Shujie Liu & Yufeng Liu & Hang Xing & Ken-ichi Otake & Susumu Kitagawa & Jiangjiexing Wu & Hao Dong & Hui Wei, 2024. "Microenvironmental modulation breaks intrinsic pH limitations of nanozymes to boost their activities," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55163-4
    DOI: 10.1038/s41467-024-55163-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55163-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55163-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dongdong Wang & Huihui Wu & Soo Zeng Fiona Phua & Guangbao Yang & Wei Qi Lim & Long Gu & Cheng Qian & Haibao Wang & Zhen Guo & Hongzhong Chen & Yanli Zhao, 2020. "Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    2. Xuewu Sui & Kun Wang & Nina L. Gluchowski & Shane D. Elliott & Maofu Liao & Tobias C. Walther & Robert V. Farese, 2020. "Structure and catalytic mechanism of a human triacylglycerol-synthesis enzyme," Nature, Nature, vol. 581(7808), pages 323-328, May.
    3. Xiaoyu Wang & Xuejiao J. Gao & Li Qin & Changda Wang & Li Song & Yong-Ning Zhou & Guoyin Zhu & Wen Cao & Shichao Lin & Liqi Zhou & Kang Wang & Huigang Zhang & Zhong Jin & Peng Wang & Xingfa Gao & Hui , 2019. "eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    4. Peng Zhang & Dengrong Sun & Ara Cho & Seunghyun Weon & Seonggyu Lee & Jinwoo Lee & Jeong Woo Han & Dong-Pyo Kim & Wonyong Choi, 2019. "Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    5. Zhenzhen Wang & Jiangjiexing Wu & Jia-Jia Zheng & Xiaomei Shen & Liang Yan & Hui Wei & Xingfa Gao & Yuliang Zhao, 2021. "Accelerated discovery of superoxide-dismutase nanozymes via high-throughput computational screening," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. Jinxing Chen & Qian Ma & Minghua Li & Daiyong Chao & Liang Huang & Weiwei Wu & Youxing Fang & Shaojun Dong, 2021. "Glucose-oxidase like catalytic mechanism of noble metal nanozymes," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Minfeng Huo & Liying Wang & Yu Chen & Jianlin Shi, 2017. "Tumor-selective catalytic nanomedicine by nanocatalyst delivery," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaizheng Feng & Zhenzhen Wang & Shi Wang & Guancheng Wang & Haijiao Dong & Hongliang He & Haoan Wu & Ming Ma & Xingfa Gao & Yu Zhang, 2024. "Elucidating the catalytic mechanism of Prussian blue nanozymes with self-increasing catalytic activity," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Haibin Si & Dexin Du & Chengcheng Jiao & Yan Sun & Lu Li & Bo Tang, 2024. "Biomimetic synergistic effect of redox site and Lewis acid for construction of efficient artificial enzyme," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Ke Chen & Guo Li & Xiaoqun Gong & Qinjuan Ren & Junying Wang & Shuang Zhao & Ling Liu & Yuxing Yan & Qingshan Liu & Yang Cao & Yaoyao Ren & Qiong Qin & Qi Xin & Shu-Lin Liu & Peiyu Yao & Bo Zhang & Ji, 2024. "Atomic-scale strain engineering of atomically resolved Pt clusters transcending natural enzymes," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Long Ma & Jia-Jia Zheng & Ning Zhou & Ruofei Zhang & Long Fang & Yili Yang & Xingfa Gao & Chunying Chen & Xiyun Yan & Kelong Fan, 2024. "A natural biogenic nanozyme for scavenging superoxide radicals," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Shan Lei & Jing Zhang & Nicholas Thomas Blum & Meng Li & Dong-Yang Zhang & Weimin Yin & Feng Zhao & Jing Lin & Peng Huang, 2022. "In vivo three-dimensional multispectral photoacoustic imaging of dual enzyme-driven cyclic cascade reaction for tumor catalytic therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Liu-Chun Wang & Pei-Yu Chiou & Ya-Ping Hsu & Chin-Lai Lee & Chih-Hsuan Hung & Yi-Hsuan Wu & Wen-Jyun Wang & Gia-Ling Hsieh & Ying-Chi Chen & Li-Chan Chang & Wen-Pin Su & Divinah Manoharan & Min-Chiao , 2023. "Prussian blue analog with separated active sites to catalyze water driven enhanced catalytic treatments," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Shaofang Zhang & Yonghui Li & Si Sun & Ling Liu & Xiaoyu Mu & Shuhu Liu & Menglu Jiao & Xinzhu Chen & Ke Chen & Huizhen Ma & Tuo Li & Xiaoyu Liu & Hao Wang & Jianning Zhang & Jiang Yang & Xiao-Dong Zh, 2022. "Single-atom nanozymes catalytically surpassing naturally occurring enzymes as sustained stitching for brain trauma," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Qing Zhang & Deqiang Yao & Bing Rao & Liyan Jian & Yang Chen & Kexin Hu & Ying Xia & Shaobai Li & Yafeng Shen & An Qin & Jie Zhao & Lu Zhou & Ming Lei & Xian-Cheng Jiang & Yu Cao, 2021. "The structural basis for the phospholipid remodeling by lysophosphatidylcholine acyltransferase 3," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    9. Kaiyuan Wang & Qing Hong & Caixia Zhu & Yuan Xu & Wang Li & Ying Wang & Wenhao Chen & Xiang Gu & Xinghua Chen & Yanfeng Fang & Yanfei Shen & Songqin Liu & Yuanjian Zhang, 2024. "Metal-ligand dual-site single-atom nanozyme mimicking urate oxidase with high substrates specificity," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Xuewu Sui & Kun Wang & Kangkang Song & Chen Xu & Jiunn Song & Chia-Wei Lee & Maofu Liao & Robert V. Farese & Tobias C. Walther, 2023. "Mechanism of action for small-molecule inhibitors of triacylglycerol synthesis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Yingchao Chen & Tao Xiong & Qiang Peng & Jianjun Du & Wen Sun & Jiangli Fan & Xiaojun Peng, 2024. "Self-reporting photodynamic nanobody conjugate for precise and sustainable large-volume tumor treatment," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Weicheng Shen & Tingting Hu & Xueyan Liu & Jiajia Zha & Fanqi Meng & Zhikang Wu & Zhuolin Cui & Yu Yang & Hai Li & Qinghua Zhang & Lin Gu & Ruizheng Liang & Chaoliang Tan, 2022. "Defect engineering of layered double hydroxide nanosheets as inorganic photosensitizers for NIR-III photodynamic cancer therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Hanchen Zhang & Nicolás Montesdeoca & Dongsheng Tang & Ganghao Liang & Minhui Cui & Chun Xu & Lisa-Marie Servos & Tiejun Bing & Zisis Papadopoulos & Meifang Shen & Haihua Xiao & Yingjie Yu & Johannes , 2024. "Tumor-targeted glutathione oxidation catalysis with ruthenium nanoreactors against hypoxic osteosarcoma," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    14. Yandong Wang & Haodong Li & Junyang Lin & Yutang Li & Keqin Zhang & Hui Li & Qiang Fu & Yanyan Jiang, 2025. "Engineering nanozyme immunomodulator with magnetic targeting effect for cascade-enzyodynamic and ultrasound-reinforced metallo-immunotherapy in prostate carcinoma," Nature Communications, Nature, vol. 16(1), pages 1-23, December.
    15. Haijiao Dong & Wei Du & Jian Dong & Renchao Che & Fei Kong & Wenlong Cheng & Ming Ma & Ning Gu & Yu Zhang, 2022. "Depletable peroxidase-like activity of Fe3O4 nanozymes accompanied with separate migration of electrons and iron ions," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Jiabin Wu & Xianyu Zhu & Qun Li & Qiang Fu & Bingxue Wang & Beibei Li & Shanshan Wang & Qingchao Chang & Huandong Xiang & Chengliang Ye & Qiqiang Li & Liang Huang & Yan Liang & Dingsheng Wang & Yulian, 2024. "Enhancing radiation-resistance and peroxidase-like activity of single-atom copper nanozyme via local coordination manipulation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Yong Kang & Zhuo Mao & Ying Wang & Chao Pan & Meitong Ou & Hanjie Zhang & Weiwei Zeng & Xiaoyuan Ji, 2022. "Design of a two-dimensional interplanar heterojunction for catalytic cancer therapy," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    18. Yanping Long & Ling Li & Tao Xu & Xizheng Wu & Yun Gao & Jianbo Huang & Chao He & Tian Ma & Lang Ma & Chong Cheng & Changsheng Zhao, 2021. "Hedgehog artificial macrophage with atomic-catalytic centers to combat Drug-resistant bacteria," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    19. Qiuping Wang & Kui Chen & Hui Jiang & Cai Chen & Can Xiong & Min Chen & Jie Xu & Xiaoping Gao & Suowen Xu & Huang Zhou & Yuen Wu, 2023. "Cell-inspired design of cascade catalysis system by 3D spatially separated active sites," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Gang He & Yashi Li & Muhammad Rizwan Younis & Lian-Hua Fu & Ting He & Shan Lei & Jing Lin & Peng Huang, 2022. "Synthetic biology-instructed transdermal microneedle patch for traceable photodynamic therapy," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55163-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.