IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-03903-8.html
   My bibliography  Save this article

In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy

Author

Listed:
  • Kelong Fan

    (Chinese Academy of Sciences)

  • Juqun Xi

    (Yangzhou University)

  • Lei Fan

    (Yangzhou University)

  • Peixia Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Chunhua Zhu

    (Yangzhou University)

  • Yan Tang

    (Yangzhou University)

  • Xiangdong Xu

    (Yangzhou University)

  • Minmin Liang

    (Chinese Academy of Sciences)

  • Bing Jiang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xiyun Yan

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Lizeng Gao

    (Yangzhou University)

Abstract

Nanomaterials with intrinsic enzyme-like activities (nanozymes), have been widely used as artificial enzymes in biomedicine. However, how to control their in vivo performance in a target cell is still challenging. Here we report a strategy to coordinate nanozymes to target tumor cells and selectively perform their activity to destruct tumors. We develop a nanozyme using nitrogen-doped porous carbon nanospheres which possess four enzyme-like activities (oxidase, peroxidase, catalase and superoxide dismutase) responsible for reactive oxygen species regulation. We then introduce ferritin to guide nitrogen-doped porous carbon nanospheres into lysosomes and boost reactive oxygen species generation in a tumor-specific manner, resulting in significant tumor regression in human tumor xenograft mice models. Together, our study provides evidence that nitrogen-doped porous carbon nanospheres are powerful nanozymes capable of regulating intracellular reactive oxygen species, and ferritinylation is a promising strategy to render nanozymes to target tumor cells for in vivo tumor catalytic therapy.

Suggested Citation

  • Kelong Fan & Juqun Xi & Lei Fan & Peixia Wang & Chunhua Zhu & Yan Tang & Xiangdong Xu & Minmin Liang & Bing Jiang & Xiyun Yan & Lizeng Gao, 2018. "In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03903-8
    DOI: 10.1038/s41467-018-03903-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-03903-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-03903-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Long Ma & Jia-Jia Zheng & Ning Zhou & Ruofei Zhang & Long Fang & Yili Yang & Xingfa Gao & Chunying Chen & Xiyun Yan & Kelong Fan, 2024. "A natural biogenic nanozyme for scavenging superoxide radicals," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Kaiyuan Wang & Qing Hong & Caixia Zhu & Yuan Xu & Wang Li & Ying Wang & Wenhao Chen & Xiang Gu & Xinghua Chen & Yanfeng Fang & Yanfei Shen & Songqin Liu & Yuanjian Zhang, 2024. "Metal-ligand dual-site single-atom nanozyme mimicking urate oxidase with high substrates specificity," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Shan Lei & Jing Zhang & Nicholas Thomas Blum & Meng Li & Dong-Yang Zhang & Weimin Yin & Feng Zhao & Jing Lin & Peng Huang, 2022. "In vivo three-dimensional multispectral photoacoustic imaging of dual enzyme-driven cyclic cascade reaction for tumor catalytic therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Jiefei Wang & Ping Shangguan & Xiaoyu Chen & Yong Zhong & Ming Lin & Mu He & Yisheng Liu & Yuan Zhou & Xiaobin Pang & Lulu Han & Mengya Lu & Xiao Wang & Yang Liu & Huiqing Yang & Jingyun Chen & Chenhu, 2024. "A one-two punch targeting reactive oxygen species and fibril for rescuing Alzheimer’s disease," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Songjing Zhong & Zeyu Zhang & Qinyu Zhao & Zhaoyang Yue & Cheng Xiong & Genglin Chen & Jie Wang & Linlin Li, 2024. "Lattice expansion in ruthenium nanozymes improves catalytic activity and electro-responsiveness for boosting cancer therapy," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Xiangqin Meng & Huizhen Fan & Lei Chen & Jiuyang He & Chaoyi Hong & Jiaying Xie & Yinyin Hou & Kaidi Wang & Xingfa Gao & Lizeng Gao & Xiyun Yan & Kelong Fan, 2024. "Ultrasmall metal alloy nanozymes mimicking neutrophil enzymatic cascades for tumor catalytic therapy," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Qing Hong & Hong Yang & Yanfeng Fang & Wang Li & Caixia Zhu & Zhuang Wang & Sicheng Liang & Xuwen Cao & Zhixin Zhou & Yanfei Shen & Songqin Liu & Yuanjian Zhang, 2023. "Adaptable graphitic C6N6-based copper single-atom catalyst for intelligent biosensing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Xin Yuan & Xiaoling Wu & Jun Xiong & Binhang Yan & Ruichen Gao & Shuli Liu & Minhua Zong & Jun Ge & Wenyong Lou, 2023. "Hydrolase mimic via second coordination sphere engineering in metal-organic frameworks for environmental remediation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Shichao Xu & Haifeng Wu & Siyuan Liu & Peidong Du & Hui Wang & Haijun Yang & Wenjie Xu & Shuangming Chen & Li Song & Jikun Li & Xinghua Shi & Zhen-Gang Wang, 2023. "A supramolecular metalloenzyme possessing robust oxidase-mimetic catalytic function," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Jing Mu & Chunxiao Li & Yu Shi & Guoyong Liu & Jianhua Zou & Dong-Yang Zhang & Chao Jiang & Xiuli Wang & Liangcan He & Peng Huang & Yuxin Yin & Xiaoyuan Chen, 2022. "Protective effect of platinum nano-antioxidant and nitric oxide against hepatic ischemia-reperfusion injury," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Shaofang Zhang & Yonghui Li & Si Sun & Ling Liu & Xiaoyu Mu & Shuhu Liu & Menglu Jiao & Xinzhu Chen & Ke Chen & Huizhen Ma & Tuo Li & Xiaoyu Liu & Hao Wang & Jianning Zhang & Jiang Yang & Xiao-Dong Zh, 2022. "Single-atom nanozymes catalytically surpassing naturally occurring enzymes as sustained stitching for brain trauma," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Ke Chen & Guo Li & Xiaoqun Gong & Qinjuan Ren & Junying Wang & Shuang Zhao & Ling Liu & Yuxing Yan & Qingshan Liu & Yang Cao & Yaoyao Ren & Qiong Qin & Qi Xin & Shu-Lin Liu & Peiyu Yao & Bo Zhang & Ji, 2024. "Atomic-scale strain engineering of atomically resolved Pt clusters transcending natural enzymes," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03903-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.