IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39779-6.html
   My bibliography  Save this article

A supramolecular metalloenzyme possessing robust oxidase-mimetic catalytic function

Author

Listed:
  • Shichao Xu

    (Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology)

  • Haifeng Wu

    (Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology)

  • Siyuan Liu

    (Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology)

  • Peidong Du

    (Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology)

  • Hui Wang

    (National Center for Nanoscience and Technology)

  • Haijun Yang

    (Tsinghua University)

  • Wenjie Xu

    (University of Science and Technology of China)

  • Shuangming Chen

    (University of Science and Technology of China)

  • Li Song

    (University of Science and Technology of China)

  • Jikun Li

    (Chinese Academy of Sciences (ICCAS))

  • Xinghua Shi

    (National Center for Nanoscience and Technology)

  • Zhen-Gang Wang

    (Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology)

Abstract

Enzymes fold into unique three-dimensional structures to distribute their reactive amino acid residues, but environmental changes can disrupt their essential folding and lead to irreversible activity loss. The de novo synthesis of enzyme-like active sites is challenging due to the difficulty of replicating the spatial arrangement of functional groups. Here, we present a supramolecular mimetic enzyme formed by self-assembling nucleotides with fluorenylmethyloxycarbonyl (Fmoc)-modified amino acids and copper. This catalyst exhibits catalytic functions akin those of copper cluster-dependent oxidases, and catalytic performance surpasses to date-reported artificial complexes. Our experimental and theoretical results reveal the crucial role of periodic arrangement of amino acid components, enabled by fluorenyl stacking, in forming oxidase-mimetic copper clusters. Nucleotides provide coordination atoms that enhance copper activity by facilitating the formation of a copper-peroxide intermediate. The catalyst shows thermophilic behavior, remaining active up to 95 °C in an aqueous environment. These findings may aid the design of advanced biomimetic catalysts and offer insights into primordial redox enzymes.

Suggested Citation

  • Shichao Xu & Haifeng Wu & Siyuan Liu & Peidong Du & Hui Wang & Haijun Yang & Wenjie Xu & Shuangming Chen & Li Song & Jikun Li & Xinghua Shi & Zhen-Gang Wang, 2023. "A supramolecular metalloenzyme possessing robust oxidase-mimetic catalytic function," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39779-6
    DOI: 10.1038/s41467-023-39779-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39779-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39779-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vasantha Basavalingappa & Santu Bera & Bin Xue & Ido Azuri & Yiming Tang & Kai Tao & Linda J. W. Shimon & Michael R. Sawaya & Sofiya Kolusheva & David S. Eisenberg & Leeor Kronik & Yi Cao & Guanghong , 2019. "Mechanically rigid supramolecular assemblies formed from an Fmoc-guanine conjugated peptide nucleic acid," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    2. Kelong Fan & Juqun Xi & Lei Fan & Peixia Wang & Chunhua Zhu & Yan Tang & Xiangdong Xu & Minmin Liang & Bing Jiang & Xiyun Yan & Lizeng Gao, 2018. "In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    3. Pandeeswar Makam & Sharma S. R. K. C. Yamijala & Venkata S. Bhadram & Linda J. W. Shimon & Bryan M. Wong & Ehud Gazit, 2022. "Single amino acid bionanozyme for environmental remediation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Yang Hou & Ming Qiu & Min Gyu Kim & Pan Liu & Gyutae Nam & Tao Zhang & Xiaodong Zhuang & Bin Yang & Jaephil Cho & Mingwei Chen & Chris Yuan & Lecheng Lei & Xinliang Feng, 2019. "Atomically dispersed nickel–nitrogen–sulfur species anchored on porous carbon nanosheets for efficient water oxidation," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Yuan & Xiaoling Wu & Jun Xiong & Binhang Yan & Ruichen Gao & Shuli Liu & Minhua Zong & Jun Ge & Wenyong Lou, 2023. "Hydrolase mimic via second coordination sphere engineering in metal-organic frameworks for environmental remediation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Rongkui Su & Hongguo Zhang & Feng Chen & Zhenxing Wang & Lei Huang, 2022. "Applications of Single Atom Catalysts for Environmental Management," IJERPH, MDPI, vol. 19(18), pages 1-6, September.
    3. Long Ma & Jia-Jia Zheng & Ning Zhou & Ruofei Zhang & Long Fang & Yili Yang & Xingfa Gao & Chunying Chen & Xiyun Yan & Kelong Fan, 2024. "A natural biogenic nanozyme for scavenging superoxide radicals," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Shan Lei & Jing Zhang & Nicholas Thomas Blum & Meng Li & Dong-Yang Zhang & Weimin Yin & Feng Zhao & Jing Lin & Peng Huang, 2022. "In vivo three-dimensional multispectral photoacoustic imaging of dual enzyme-driven cyclic cascade reaction for tumor catalytic therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Jiefei Wang & Ping Shangguan & Xiaoyu Chen & Yong Zhong & Ming Lin & Mu He & Yisheng Liu & Yuan Zhou & Xiaobin Pang & Lulu Han & Mengya Lu & Xiao Wang & Yang Liu & Huiqing Yang & Jingyun Chen & Chenhu, 2024. "A one-two punch targeting reactive oxygen species and fibril for rescuing Alzheimer’s disease," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Jiajing Pei & Huishan Shang & Junjie Mao & Zhe Chen & Rui Sui & Xuejiang Zhang & Danni Zhou & Yu Wang & Fang Zhang & Wei Zhu & Tao Wang & Wenxing Chen & Zhongbin Zhuang, 2024. "A replacement strategy for regulating local environment of single-atom Co-SxN4−x catalysts to facilitate CO2 electroreduction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Weiwei Fu & Jin Wan & Huijuan Zhang & Jian Li & Weigen Chen & Yuke Li & Zaiping Guo & Yu Wang, 2022. "Photoinduced loading of electron-rich Cu single atoms by moderate coordination for hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Siliu Lyu & Chenxi Guo & Jianing Wang & Zhongjian Li & Bin Yang & Lecheng Lei & Liping Wang & Jianping Xiao & Tao Zhang & Yang Hou, 2022. "Exceptional catalytic activity of oxygen evolution reaction via two-dimensional graphene multilayer confined metal-organic frameworks," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Xiangqin Meng & Huizhen Fan & Lei Chen & Jiuyang He & Chaoyi Hong & Jiaying Xie & Yinyin Hou & Kaidi Wang & Xingfa Gao & Lizeng Gao & Xiyun Yan & Kelong Fan, 2024. "Ultrasmall metal alloy nanozymes mimicking neutrophil enzymatic cascades for tumor catalytic therapy," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    10. Guokang Han & Xue Zhang & Wei Liu & Qinghua Zhang & Zhiqiang Wang & Jun Cheng & Tao Yao & Lin Gu & Chunyu Du & Yunzhi Gao & Geping Yin, 2021. "Substrate strain tunes operando geometric distortion and oxygen reduction activity of CuN2C2 single-atom sites," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    11. Jing Mu & Chunxiao Li & Yu Shi & Guoyong Liu & Jianhua Zou & Dong-Yang Zhang & Chao Jiang & Xiuli Wang & Liangcan He & Peng Huang & Yuxin Yin & Xiaoyuan Chen, 2022. "Protective effect of platinum nano-antioxidant and nitric oxide against hepatic ischemia-reperfusion injury," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Wei Peng & Jiaxin Liu & Xiaoqing Liu & Liqun Wang & Lichang Yin & Haotian Tan & Feng Hou & Ji Liang, 2023. "Facilitating two-electron oxygen reduction with pyrrolic nitrogen sites for electrochemical hydrogen peroxide production," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Yizhen Lu & Bixuan Li & Na Xu & Zhihua Zhou & Yu Xiao & Yu Jiang & Teng Li & Sheng Hu & Yongji Gong & Yang Cao, 2023. "One-atom-thick hexagonal boron nitride co-catalyst for enhanced oxygen evolution reactions," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. Qing Hong & Hong Yang & Yanfeng Fang & Wang Li & Caixia Zhu & Zhuang Wang & Sicheng Liang & Xuwen Cao & Zhixin Zhou & Yanfei Shen & Songqin Liu & Yuanjian Zhang, 2023. "Adaptable graphitic C6N6-based copper single-atom catalyst for intelligent biosensing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Shaofang Zhang & Yonghui Li & Si Sun & Ling Liu & Xiaoyu Mu & Shuhu Liu & Menglu Jiao & Xinzhu Chen & Ke Chen & Huizhen Ma & Tuo Li & Xiaoyu Liu & Hao Wang & Jianning Zhang & Jiang Yang & Xiao-Dong Zh, 2022. "Single-atom nanozymes catalytically surpassing naturally occurring enzymes as sustained stitching for brain trauma," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    16. Fanpeng Cheng & Xianyun Peng & Lingzi Hu & Bin Yang & Zhongjian Li & Chung-Li Dong & Jeng-Lung Chen & Liang-Ching Hsu & Lecheng Lei & Qiang Zheng & Ming Qiu & Liming Dai & Yang Hou, 2022. "Accelerated water activation and stabilized metal-organic framework via constructing triangular active-regions for ampere-level current density hydrogen production," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39779-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.